
Introduction to OpenACC

OPENACC

INTRODUCTION TO OPENACC

3 WAYS TO ACCELERATE
APPLICATIONS

Applications

Libraries

Easy to use

Most Performance

Programming

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

OpenACC

OPENACC IS…

a directives-based parallel

programming model

designed for performance

and portability.

main()
{
<serial code>
#pragma acc kernels
{
<parallel code>

}
}

Add Simple Compiler Directive

OpenACC Directives

Manage

Data

Movement

Initiate

Parallel

Execution

Optimize

Loop

Mappings

#pragma acc data copyin(a,b) copyout(c)
{

...
#pragma acc parallel
{
#pragma acc loop gang

for (i = 0; i < n; ++i) {
#pragma acc loop vector

for (j = 0; j < n; ++j) {
c[i][j] = a[i][j] + b[i][j];
...

}
}

}
...

}

CPU, GPU, Manycore

Performance portable

Interoperable

Single source

Incremental

Incremental

OPENACC: INCREMENTAL

▪ Maintain existing
sequential code

▪ Add annotations to
expose parallelism

▪ After verifying
correctness, annotate
more of the code

for(i = 0; i < N; i++)
{

< loop code >
}

for(i = 0; i < N; i++)
{

< loop code >
}

Enhance Sequential Code

#pragma acc parallel loop
for(i = 0; i < N; i++)
{

< loop code >
}

#pragma acc parallel loop
for(i = 0; i < N; i++)
{

< loop code >
}

Begin with a working
sequential code.

Parallelize it with OpenACC.

Rerun the code to verify
correctness and

performance

Single Source

OPENACC: SINGLE SOURCE

▪ Rebuild the same code
on multiple
architectures

▪ Compiler determines
how to parallelize for
the desired machine

▪ Sequential code is
maintained

POWER

Sunway

x86 CPU

ARM CPU

AMD GPU

NVIDIA GPU

PEZY-SC

Supported Platforms

int main(){

...

for(int i = 0; i < N; i++)
< loop code >

}

int main(){

...

#pragma acc parallel loop
for(int i = 0; i < N; i++)

< loop code >

}

The compiler can ignore your
OpenACC code additions, so the same

code can be used for parallel or
sequential execution.

Low Learning Curve

OPENACC: PROGRAMMABILITY

▪ OpenACC is meant to
be easy to use, and
easy to learn

▪ Programmer remains
in familiar C, C++, or
Fortran

▪ No requirement to
learn low-level details
of the hardware.

int main(){

<sequential code>

#pragma acc kernels
{
<parallel code>
}

}

Compiler
Hint

CPU
Parallel Hardware

The programmer will
give hints to the

compiler.

The compiler
parallelizes the code.

DIRECTIVE-BASED HPC PROGRAMMING
Who’s Using OpenACC?

160,000+ DOWNLOADS725 TRAINED EXPERTS

5 OF 13 CAAR CODES3 OF TOP 5 HPC APPS ACCELERATED APPS

SLACK MEMBERS

102

326

846

GTC17 GTC18 GTC19

53

100
116

194

GTC16 GTC17 GTC18 GTC19

VASP

For VASP, OpenACC is the way

forward for GPU acceleration.

Performance is similar and in some

cases better than CUDA C, and

OpenACC dramatically decreases

GPU development and maintenance

efforts. We’re excited to collaborate

with NVIDIA and PGI as an early

adopter of CUDA Unified Memory.

Prof. Georg Kresse
Computational Materials Physics
University of Vienna

Name: Munikrishna Nagaram

Title:

Company: S & I Engineering
Solutions Pvt. Ltd.
Bangalore, India

HiFUN

“OpenACC allowed us to port our legacy CFD code
to hybrid CPU+GPU platforms in a form that is
readable and maintainable, and enabled us to see
a speed-up of 3.0x on our HiFUN MPI solver.”

Chief Technology Officer

Name: Somnath Roy

Mechanical Engineering Department
Indian Institute of Technology
Kharagpur

IBM CFD

“Using OpenACC to accelerate our immersed
boundary incompressible CFD code, we’re seeing
an order of magnitude reduction in computing
time running on GPUs. Routines involving our
search algorithm and matrix solvers perform
especially well with OpenACC, and improve the
overall scalability of the code.”

OPENACC SYNTAX

OPENACC SYNTAX

▪ A pragma in C/C++ gives instructions to the compiler on how to compile the code.
Compilers that do not understand a particular pragma can freely ignore it.

▪ A directive in Fortran is a specially formatted comment that likewise instructions the
compiler in it compilation of the code and can be freely ignored.

▪ “acc” informs the compiler that what will come is an OpenACC directive

▪ Directives are commands in OpenACC for altering our code.

▪ Clauses are specifiers or additions to directives.

Syntax for using OpenACC directives in code

C/C++

#pragma acc directive clauses
<code>

Fortran

!$acc directive clauses
<code>

EXAMPLE CODE

LAPLACE HEAT TRANSFER
Introduction to lab code - visual

Very Hot Room Temp

We will observe a simple simulation
of heat distributing across a metal

plate.

We will apply a consistent heat to
the top of the plate.

Then, we will simulate the heat
distributing across the plate.

EXAMPLE: JACOBI ITERATION

▪ Iteratively converges to correct value (e.g. Temperature), by computing new
values at each point from the average of neighboring points.

▪ Common, useful algorithm

▪ Example: Solve Laplace equation in 2D: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎

A(i,j)
A(i+1,j)A(i-1,j)

A(i,j-1)

A(i,j+1)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

JACOBI ITERATION: C CODE

18

while (err > tol && iter < iter_max) {

err=0.0;

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Iterate until converged

Iterate across matrix

elements

Calculate new value from

neighbors

Compute max error for

convergence

Swap input/output arrays

OPENACC PARALLEL LOOP DIRECTIVE

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}

When encountering the
parallel directive, the
compiler will generate

1 or more parallel
gangs, which execute

redundantly.

gang

gang gang

gang

gang

gang

#pragma acc parallel
{

}

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

This loop will be
executed redundantly

on each gang

gang

gang gang

gang

gang

gang

loop

lo
o

p

lo
o

p

lo
o

p

lo
o

p

lo
o

p

lo
o

p

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

}
This means that each
gang will execute the

entire loop

gang

gang gang

gang

gang

gang

OPENACC PARALLEL DIRECTIVE
Parallelizing a single loop

▪ Use a parallel directive to mark a region of
code where you want parallel execution to occur

▪ This parallel region is marked by curly braces in
C/C++ or a start and end directive in Fortran

▪ The loop directive is used to instruct the
compiler to parallelize the iterations of the next
loop to run across the parallel gangs

C/C++

#pragma acc parallel
{
#pragma acc loop
for(int i = 0; j < N; i++)
a[i] = 0;

}

Fortran

!$acc parallel
!$acc loop
do i = 1, N
a(i) = 0

end do
!$acc end parallel

OPENACC PARALLEL LOOP DIRECTIVE
Parallelizing a single loop

▪ This pattern is so common that you can do all of
this in a single line of code

▪ In this example, the parallel loop directive
applies to the next loop

▪ This directive both marks the region for parallel
execution and distributes the iterations of the
loop.

▪ When applied to a loop with a data dependency,
parallel loop may produce incorrect results

C/C++

#pragma acc parallel loop
for(int i = 0; j < N; i++)
a[i] = 0;

Fortran

!$acc parallel loop
do i = 1, N
a(i) = 0

end do

#pragma acc parallel
{

for(int i = 0; i < N; i++)
{

// Do Something
}

}

OPENACC PARALLEL DIRECTIVE
Expressing parallelism

#pragma acc parallel
{

#pragma acc loop
for(int i = 0; i < N; i++)
{

// Do Something
}

}

The loop directive
informs the compiler

which loops to
parallelize.

gang

gang gang

gang

gang

gang

PARALLELIZE WITH OPENACC PARALLEL LOOP

26

while (err > tol && iter < iter_max) {

err=0.0;

#pragma acc parallel loop reduction(max:err)

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +

A[j-1][i] + A[j+1][i]);

err = max(err, abs(Anew[j][i] - A[j][i]));

}

}

#pragma acc parallel loop

for(int j = 1; j < n-1; j++) {

for(int i = 1; i < m-1; i++) {

A[j][i] = Anew[j][i];

}

}

iter++;

}

Parallelize first loop nest,

max reduction required.

Parallelize second loop.

We didn’t detail how to
parallelize the loops, just which

loops to parallelize.

REDUCTION CLAUSE

▪ The reduction clause takes many values and
“reduces” them to a single value, such as in a
sum or maximum

▪ Each partial result is calculated in parallel

▪ A single result is created by combining the
partial results using the specified operation

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
double tmp = 0.0f;
#pragma acc parallel loop \
reduction(+:tmp)

for(k = 0; k < size; k++)
tmp += a[i][k] * b[k][j];

c[i][j] = tmp;

for(i = 0; i < size; i++)
for(j = 0; j < size; j++)
for(k = 0; k < size; k++)
c[i][j] += a[i][k] * b[k][j];

REDUCTION CLAUSE OPERATORS

Operator Description Example

+ Addition/Summation reduction(+:sum)

* Multiplication/Product reduction(*:product)

max Maximum value reduction(max:maximum)

min Minimum value reduction(min:minimum)

& Bitwise and reduction(&:val)

| Bitwise or reduction(|:val)

&& Logical and reduction(&&:val)

|| Logical or reduction(||:val)

BUILD AND RUN THE CODE

PGI COMPILER BASICS

▪ The command to compile C code is ‘pgcc’

▪ The command to compile C++ code is ‘pgc++’

▪ The command to compile Fortran code is ‘pgfortran’

▪ The -fast flag instructs the compiler to optimize the code to the best of its abilities

pgcc, pgc++ and pgfortran

$ pgcc –fast main.c
$ pgc++ -fast main.cpp
$ pgfortran –fast main.F90

PGI COMPILER BASICS

▪ The -Minfo flag will instruct the compiler to print feedback about the compiled code

▪ -Minfo=accel will give us information about what parts of the code were accelerated
via OpenACC

▪ -Minfo=opt will give information about all code optimizations

▪ -Minfo=all will give all code feedback, whether positive or negative

-Minfo flag

$ pgcc –fast –Minfo=all main.c
$ pgc++ -fast -Minfo=all main.cpp
$ pgfortran –fast –Minfo=all main.f90

PGI COMPILER BASICS

▪ The -ta flag enables building OpenACC code for a “Target Accelerator” (TA)

▪ -ta=multicore – Build the code to run across threads on a multicore CPU

▪ -ta=tesla:managed – Build the code for an NVIDIA (Tesla) GPU and manage the
data movement automatically (more next module)

-ta flag

$ pgcc –fast –Minfo=accel –ta=tesla:managed main.c
$ pgc++ -fast -Minfo=accel –ta=tesla:managed main.cpp
$ pgfortran –fast –Minfo=accel –ta=tesla:managed main.f90

PGI COMPILER BASICS

▪ The -Mcuda flag is needed when using NVTX regions in our code

▪ -lnvToolsExt – link the NVTX API

▪ This allows us to use NVTX regions in our code for both CPU and GPU profiling

-Mcuda flag

$ pgcc –fast –Minfo=accel –ta=tesla:managed –Mcuda –lnvToolsExt main.c
$ pgc++ -fast -Minfo=accel –ta=tesla:managed –Mcuda –lnvToolsExt main.cpp
$ pgfortran –fast –Minfo=accel –ta=tesla:managed –Mcuda –lnvToolsExt main.f90

BUILDING THE CODE (MULTICORE)

34

$ pgcc -fast -ta=multicore -Minfo=accel –Mcuda -lnvToolsExt laplace2d_uvm.c

main:

63, Generating Multicore code

64, #pragma acc loop gang

64, Accelerator restriction: size of the GPU copy of Anew,A is unknown

Generating reduction(max:error)

66, Loop is parallelizable

74, Generating Multicore code

75, #pragma acc loop gang

75, Accelerator restriction: size of the GPU copy of Anew,A is unknown

77, Loop is parallelizable

OPENACC SPEED-UP

1.00X

10.43X

0.00X

2.00X

4.00X

6.00X

8.00X

10.00X

12.00X

SERIAL MULTICORE

S
p

e
e

d
-U

p

Speed-up

PGI 19.10, NVIDIA Tesla V100, IBM POWER9 22-core CPU @ 3.07GHz

BUILDING THE CODE (GPU)

36

$ pgcc -fast -ta=tesla:managed -Minfo=accel -Mcuda –lnvToolsExt laplace2d_uvm.c

main:

63, Accelerator kernel generated

Generating Tesla code

64, #pragma acc loop gang /* blockIdx.x */

Generating reduction(max:error)

66, #pragma acc loop vector(128) /* threadIdx.x */

63, Generating implicit copyin(A[:])

Generating implicit copyout(Anew[:])

Generating implicit copy(error)

66, Loop is parallelizable

74, Accelerator kernel generated

Generating Tesla code

75, #pragma acc loop gang /* blockIdx.x */

77, #pragma acc loop vector(128) /* threadIdx.x */

74, Generating implicit copyin(Anew[:])

Generating implicit copyout(A[:])

77, Loop is parallelizable

OPENACC SPEED-UP

1.00X

10.43X

34.88X

0.00X

5.00X

10.00X

15.00X

20.00X

25.00X

30.00X

35.00X

40.00X

SERIAL MULTICORE NVIDIA TESLA V100

S
p

e
e

d
-U

p

Speed-up

PGI 19.10, NVIDIA Tesla V100, IBM POWER9 22-core CPU @ 3.07GHz

