

2

Legal Notice

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
SUMMARY.

[BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Core Inside, i960, Intel, the Intel logo, Intel Atom, Intel
Atom Inside, Intel Core, Intel Inside, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo, Intel StrataFlash, Intel
Viiv, Intel vPro, Intel XScale, InTru, the InTru logo, InTru soundmark, Itanium, Itanium Inside, MCS, MMX, Pentium, Pentium
Inside, skoool, the skoool logo, Sound Mark, The Journey Inside, vPro Inside, VTune, Xeon, and Xeon Inside] are
trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

Bluetooth is a trademark owned by its proprietor and used by Intel Corporation under license.

Intel Corporation uses the Palm OS® Ready mark under license from Palm, Inc.

Copyright © 2015, Intel Corporation. All rights reserved.

The scope and challenge of Vectorization

4

Challenge

The process of modernizing todays software is a huge problem but also a great
opportunity for Intel. Vectorization in particular is a daunting challenge for
customers. In order for customers to have any chance of fully utilizing today’s
latest hardware they need to thread and vectorize their code. But not all
threading or vectorization designs are worthwhile. How do you choose which
designs to implement without disrupting ongoing development?

SWPC COLLABORATE. INNOVATE. ENRICH.

Performance is a Proven Game Changer
It is driving disruptive change in multiple industries

5

Solving Austin, Texas’s traffic problem

Running advanced traffic simulations to improve the
models used to plan infrastructure and traffic control
changes

Protecting buildings from extreme events

Sophisticated mechanics simulations are performed
to identify innovative ways to protect infrastructure
from extreme events, such as natural disasters.

New possible treatments for Parkinson’s

Extensive calculations performed at supercomputer
helped researchers to learn more about the protein
structure’s evolution

Click on a picture for details

http://goparallel.sourceforge.net/supercomputer-helps-put-brakes-traffic-woes/
http://goparallel.sourceforge.net/supercomputer-helps-put-brakes-traffic-woes/
http://goparallel.sourceforge.net/parkinsons-disease-discovery-may-lead-new-treatments/
http://goparallel.sourceforge.net/parkinsons-disease-discovery-may-lead-new-treatments/
http://goparallel.sourceforge.net/terror-proofing-buildings-supercomputers/
http://goparallel.sourceforge.net/terror-proofing-buildings-supercomputers/

The “Free Lunch” is over, really
Processor clock rate growth halted around 2005

6

Source: © 2014, James Reinders, Intel, used with permission

Software must be parallelized to realize
all the potential performance

Moore’s Law Is Going Strong
Hardware performance continues to grow exponentially

7

“We think we can continue Moore's Law
for at least another 10 years."

Intel Senior Fellow Mark Bohr, 2015

Intel® Xeon®

processor

64-bit

Intel® Xeon®

processor

5100 series

Intel® Xeon®

processor

5500 series

Intel® Xeon®

processor

5600 series

Intel® Xeon®

processor
code-named

Sandy Bridge
EP

Intel® Xeon®

processor
code-named

Ivy Bridge
EP

Intel® Xeon®

processor
code-named

Haswell
EP

Core(s) 1 2 4 6 8 12 18

Threads 2 2 8 12 16 24 36

SIMD Width 128 128 128 128 256 256 256

Intel® Xeon Phi™
coprocessor

Knights
Corner

Intel® Xeon Phi™
processor &
coprocessor

Knights
Landing1

61 60+

244

512

*Product specification for launched and shipped products available on ark.intel.com. 1. Not launched or in
planning.

High performance software must be both:

 Parallel (multi-thread, multi-process)

 Vectorized

Changing Hardware Impacts Software
More cores More Threads Wider vectors

8

9

Auto-Vectorization
SIMD – Single Instruction Multiple Data

• Scalar mode
– one instruction produces

one result

• SIMD processing
– with SSE or AVX instructions

– one instruction can produce multiple

results

+
a[i]

b[i]

a[i]+b[i]

+

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

for (i=0;i<=MAX;i++)

c[i]=a[i]+b[i];

10

a

b

a+b

+

Vector Instructions are Dramatically Faster
Multiple arithmetic operations with a single instruction

11

Adding 2
vectors

• These instructions are also referred to as Single Instruction Multiple Data
(SIMD instructions)

+

=

Intel®

AVX2

8x floats

4x doubles

Intel®

AVX

32x bytes

16x 16-bit shorts

8x 32-bit integers

4x 64-bit integers

2x 128-bit(!) integer

Intel® Advanced Vector Extensions (Intel® AVX)

12

Vector length –
the number of
elements that
can processed

Don’t use a single Vector lane!
Un-vectorized and un-threaded software will under perform

13

Permission to Design for All Lanes
Threading and Vectorization needed to fully utilize modern hardware

14

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

O
p

ti
o

n
s

P
e

r
Se

c

2012
Intel® Xeon™

Processor

E5-2600
family formerly

codenamed

Sandy Bridge

2013
Intel® Xeon™

Processor

E5-2600 v2
family formerly

codenamed

Ivy Bridge

2010
Intel® Xeon™

Processor

X5680
formerly

codenamed

Westmere

2007
Intel® Xeon™

Processor

X5472
formerly

codenamed

Harpertown

200
9

Intel® Xeon™
Processor

X5570
formerly

codenamed

Nehale
m

2014
Intel® Xeon™

Processor

E5-2600 v3
family formerly

codenamed

Haswell

179x

B
in

o
m

ia
l

O
p

ti
o

n
s

P
e

r
S

e
c.

S

P
 (

H
ig

h
e

r
is

 B
e

tt
e

r)

Untapped Potential Can Be Huge!
Threaded + Vectorized can be much faster than either one alone

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult
other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products. For more information go to http://www.intel.com/performance

Threaded Vectorized

 X

X

X X

15

Configurations for
Binomial Options SP

at the end
of this presentation

http://www.intel.com/performance

Have you:

 Tried threading an app, but seen little
performance benefit?

 Hit a “scalability barrier”? Performance
gains level off as you add cores?

 Delayed a release that adds threading
because of synchronization errors?

Breakthrough for threading design:

 Quickly prototype multiple options

 Project scaling on larger systems

 Find synchronization errors before
implementing threading

 Separate design and implementation -
Design without disrupting development

16

Data-Driven Threading Design
Intel® Advisor XE – Thread Prototyping

http://intel.ly/advisor-xe

Add Parallelism with Less Effort,
Less Risk and More Impact

http://intel.ly/advisor-xe

Have you:

 Recompiled with AVX2, but seen little benefit?

 Wondered where to start adding vectorization?

 Recoded intrinsics for each new architecture?

 Struggled with cryptic compiler vectorization messages?

Breakthrough for vectorization design

 What vectorization will pay off the most?

 What is blocking vectorization and why?

 Are my loops vector friendly?

 Will reorganizing data increase performance?

 Is it safe to just use pragma simd?

17

Data Driven Vectorization Design
Intel® Advisor XE – Vectorization Advisor

More Performance
Fewer Machine Dependencies

The Right Data At Your Fingertips
Get all the data you need for high impact vectorization

18

Filter by which
loops are

vectorized!

Focus on
hot

loops

What
vectorization

issues do I
have?

How efficient
is the code?

What prevents
vectorization?

Which Vector
instructions are

being use?

Trip Counts

4 Steps to Efficient Vectorization
Intel® Advisor XE – Vectorization Advisor

19

2. Guidance: detect problem and
recommend how to fix it

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

3. Loop-Carried Dependency Analysis 4. Memory Access Patterns Analysis

20

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

21

Efficiently Vectorize your code
Intel Advisor XE – Vectorization Advisor

Background on loop vectorization

22

A typical vectorized loop consists of

Main vector body

• Fastest among the three!

Optional peel part

• Used for the unaligned references in your loop. Uses Scalar or slower vector

Remainder part

• Due to the number of iterations (trip count) not being divisible by vector
length. Uses Scalar or slower vector.

Larger vector register means more iterations in peel/remainder

• Make sure you Align your data!

• Make the number of iterations divisible by the vector length!

This is where we want our
loops to be executing!

23

Intel Advisor XE shows how much time you are spending in the various
parts of your loops!

24

2. Guidance: detect problem and
recommend how to fix it

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

Click to see recommendation

Advisor XE shows hints to move
iterations to vector body.

Get Specific Advice For Improving Vectorization
Intel® Advisor XE – Vectorization Advisor

26

Don’t Just Vectorize, Vectorize Efficiently
See detailed times for each part of your loops. Is it worth more effort?

27

Critical Data Made Easy
Loop Trip Counts

Check
actual trip

counts

Loop is iterating
101 times but

called > million
times

Since the loop is
called so many

times it would be
a big win if we

can get it to
vectorize.

Knowing the time
spent in a loop is not

enough!

28

2. Guidance: detect problem and
recommend how to fix it

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

3. Loop-Carried Dependency Analysis

29

Is It Safe to Vectorize?
Loop-carried dependencies analysis verifies correctness

Vector Dependence
prevents

Vectorization!

Select loop for
Correct

Analysis and
press play!

Data Dependencies – Tough Problem #1
Is it safe to force the compiler to vectorize?

Data dependencies

for (i=0;i<N;i++) // Loop carried dependencies!

A[i] = A[i-1]*С[i];// Need the ability to check if it

// it is safe to force the compiler

// the compiler to vectorize!

30

Correctness – Is It Safe to Vectorize?
Loop-carried dependencies analysis

31

Received recommendations to force
vectorization of a loop:

1. Mark-up the loop and check for
the presence of REAL dependencies

2. Explore dependencies in more
details with code snippets

In this example 3 dependencies were
detected

• RAW – Read After Write

• WAR – Write After Read

• WAW – Write After Write

This is NOT a good
candidate to force
vectorization!

Detected
dependencies

Source lines with Read and
Write accesses detected

32

2. Guidance: detect problem and
recommend how to fix it

1. Compiler diagnostics + Performance
Data + SIMD efficiency information

3. Loop-Carried Dependency Analysis 4. Memory Access Patterns Analysis

 Non-unit strided access to arrays

for (i=0;i<N;i+=2) //Incrementing “i” by 2 is not unit stride

//We need a way to check how we are

//accessing memory.

 Indirect reference in a loop

for (i=0;i<N;i++)

A[B[i]] = C[i]*D[i];//We have to decode B[i] to find out

//which element of A to reference

33

Non-Contiguous Memory – Tough Problem #2
Potential to vectorize but may be inefficient

Run Memory Access Patterns analysis,
just to check how memory is used in the
loop and the called function

Select loops of interest

Improve Vectorization
Memory Access pattern analysis

All memory accesses are uniform, with zero unit stride, so
the same data is read in each iteration

We can therefore declare this function using the omp
syntax: pragma omp declare simd uniform(x0

Find vector optimization opportunities
Memory Access pattern analysis

Stride distribution

 Quickly identify
loops that are good,
bad or mixed.

 Unit stride memory
accesses are
preferable.

 Find unaligned data

36

Quickly Find Loops with Non-optimal Stride
Memory Access pattern analysis

• File->New->Project

38

Before you analyze
Create Project

39

Analyze what loops you are spending your time in and how they
have been vectorized!

Click Collect

Survey Report

40

All the data in one place

Top
Down

Sourc
e

Assembl
y

Recommendation
s

Compiler
Diagnostics

41

Next analyze how many times your loops are iterating and how
many times they are called.

Click
Collec

t

42

Specify loops for deeper analysis

43

Deeper analysis
Check dependencies

Click Collect

We marked 3 loops for a
dependency analysis. Two of

the loops had no dependencies.
One of the loops has Read-

After-Write dependency and
can’t be vectorized.

44

Deeper analysis
Memory Access Pattern analysis

Click Collect

Stride distribution

Configurations for Binomial Options SP

Platform

Unscaled
Core

Frequenc
y

Cores/
Socket

Num
Sockets

L1
Data

Cache
L1 I

Cache
L2

Cache
L3

Cache Memory

Memory
Frequenc

y
Memory
Access

H/W
Prefetchers

Enabled
HT

Enabled
Turbo

Enabled C States
O/S

Name
Operating

System
Compiler
Version

Intel® Xeon™
5472 Processor 3.0 GHZ 4 2 32K 32K 12 MB None 32 GB 800 MHZ UMA Y N N

Disable
d

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Intel® Xeon™
X5570 Processor 2.93 GHZ 4 2 32K 32K 256K 8 MB 48 GB

1333
MHZ NUMA Y Y Y

Disable
d

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Intel® Xeon™
X5680 Processor 3.33 GHZ 6 2 32K 32K 256K 12 MB 48 MB

1333
MHZ NUMA Y Y Y

Disable
d

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Intel® Xeon™ E5
2690 Processor 2.9 GHZ 8 2 32K 32K 256K 20 MB 64 GB

1600
MHZ NUMA Y Y Y

Disable
d

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Intel® Xeon™ E5
2697v2

Processor 2.7 GHZ 12 2 32K 32K 256K 30 MB 64 GB
1867
MHZ NUMA Y Y Y

Disable
d

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Codename
Haswell 2.2 GHz 14 2 32K 32K 256K 35 MB 64 GB

2133
MHZ NUMA Y Y Y

Disable
d

Fedora
20

3.13.5-
202.fc20

icc version
14.0.1

Platform Hardware and Software Configuration

Optimization Notice
Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice. Notice
revision #20110804

Performance measured in Intel Labs by Intel employees

Legal Disclaimer & Optimization
Notice
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

Copyright © 2015v, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the
Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

47

