VECTORIZE OR DIE
TUTORIAL



Legal Notice

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS
SUMMARY.

[BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Core Inside, i960, Intel, the Intel logo, Intel Atom, Intel
Atom Inside, Intel Core, Intel Inside, the Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel
SingleDriver, Intel SpeedStep, Intel Sponsors of Tomorrow., the Intel Sponsors of Tomorrow. logo, Intel StrataFlash, Intel
Viiv, Intel vPro, Intel XScale, InTru, the InTru logo, InTru soundmark, Itanium, Itanium Inside, MCS, MMX, Pentium, Pentium
Inside, skoool, the skoool logo, Sound Mark, The Journey Inside, vPro Inside, VTune, Xeon, and Xeon Inside] are
trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the
United States and/or other countries.

Java and all Java based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the
U.S. and other countries.

Bluetooth is a trademark owned by its proprietor and used by Intel Corporation under license.
Intel Corporation uses the Palm OS® Ready mark under license from Palm, Inc.

Copyright © 2015, Intel Corporation. All rights reserved.




INTRODUCTION

The scope and challenge of Vectorization



Challenge

The process of modernizing todays software is a huge problem but also a great
opportunity for Intel. Vectorization in particular is a daunting challenge for
customers. In order for customers to have any chance of fully utilizing today’s
latest hardware they need to thread and vectorize their code. But not all
threading or vectorization designs are worthwhile. How do you choose which
designs to implement without disrupting ongoing development?

SWPC COLLABORATE. INNOVATE. ENRICH. (intel. . 4




Performance is a Proven Game Changer
It is driving dlsruptlve change in multiple industries

" Protecting buildings from extreme events
Sophisticated mechanics simulations are performed

to identify innovative ways to protect infrastructure
from extreme events, such as natural disasters.

Solving Austin, Texas’s traffic problem

Running advanced traffic simulations to improve the

models used to plan infrastructure and traffic control
changes

New possible treatments for Parkinson’s
Extensive calculations performed at supercomputer

helped researchers to learn more about the protein
structure’s evolution

Click on a picture for details



http://goparallel.sourceforge.net/supercomputer-helps-put-brakes-traffic-woes/
http://goparallel.sourceforge.net/supercomputer-helps-put-brakes-traffic-woes/
http://goparallel.sourceforge.net/parkinsons-disease-discovery-may-lead-new-treatments/
http://goparallel.sourceforge.net/parkinsons-disease-discovery-may-lead-new-treatments/
http://goparallel.sourceforge.net/terror-proofing-buildings-supercomputers/
http://goparallel.sourceforge.net/terror-proofing-buildings-supercomputers/

The “Free Lunch” is over, really

Processor clock rate growth halted around 2005

10 Clock Rates

]
=]
1 GHz l.

o o
0.1 .*
o
L E
= BB
|
0.01 §. ¢
o ]
|
=]
0.001 —
=]
0.0001

1969 1974 1979 1984 1989 1994 1999 2004 2009 2014

Source: © 2014, James Reinders, Intel, used with permission

Software must be parallelized to realize

all the iotential ierformance




Moore's Law Is Going Strong
Hardware performance continues to grow exponentially

10000 Transistor Counts 0

M o‘

e o
¢ ¢ o

1000

°

100 S o
HP©©o oo o
W0

10 °
o o.au%' °
© 00000000 o

1 million transistors
® o 00

0.1
0.01

0.001
1974 1979 1984 1989 1994 1999 2004 2009 2014

Source: © 2014, James Reinders, Intel, used with permission

“We think we can continue Moore's Law
for at least another 10 years."




Changing Hardware Impacts Software

More cores = More Threads = Wider vectors

Intel” Xeon” Intel” Xeon” Intel” Xeon® Intel” Xeon® Intel” Xeon” Intel” Xeon® Intel” Xeon® Intel” Xeon Phi™ Intel® Xeon Phi™
processor processor processor processor processor processor processor coprocessor processor &
64-bit 5100 series 5500 series 5600 series conenamed codenamed GEE=TEIE Knights coprocessor
Sandy Bridge Ivy Bridge Haswell Commar Knights
EP EP EP Landing’
Core(s) 1 2 4 6 8 12 18 61 60+
Threads 2 2 8 12 16 24 36 244
SIMD Width 128 128 128 128 256 256 256 512
*Product specification for launched and shipped products available on ark.intel.com. 1. Not launched or in
planning.

High performance software must be both:

= Parallel (multi-thread, multi-process)




INTEL" ADVISOR XE

VECTORIZATION OPTIMIZATION AND THREAD PROTOTYPING

S



Auto-Vectorization
SIMD - Single Instruction Multiple Data

e Scalar mode e SIMD processing
— one instruction produces — with SSE or AVX instructions
one result — one instruction can produce multiple
results

for (1=0;i<=MAX; 1i++)

cl[i]=al1]+b[1];
il ali+4] ais] ali+2] ali+1] Sali

+ +

b m:g— 5 BEE]) bli-4] B2 b{i+2] bfi+1] B[]
y 4
alil+bii] SN ) ) B ci- [eiie) civ2) ciu [

intel‘ . 10



Vector Instructions are Dramatically Faster
Multiple arithmetic operations with a single instruction

AYe [0

44 11 31 -85 -13 1.7 1.5 5.6 -3.2 3.6 4.8

03 -0.5 0.5 0 0.1 0.8 0.9 0.7 1 06 | -05

* These instructions are also referred to as Single Instruction Multiple Data
(SIMD instructions)

intel‘ . 11




Intel® Advanced Vector Extensions (Intel® AVX)

Intel”

avx | .

8x floats

4x doubles

SERCRCRERERLERERL
Intel” — —f a—
AVX2

Vector length -
the number of
elements that

can processed

32x bytes

16x 16-bit shorts
8x 32-bit integers
4x 64-bit integers

2x 128-bit(!) integer




Don't use a single Vector lane!

Un-vectorized and un-threaded software will under perform

inteI' \ 13




Permission to Design for All Lanes

Threading and Vectorization needed to fully utilize modern hardware

i

intel' ~ 14




Untapped Potential Can Be Huge!

Threaded + Vectorized can be much faster than either one alone
1

0,000 Threaded Vectorized A

v v
0,000

4 X

0,000
=l X v

o x 179x

0,000

0,000

Binomial Options Per Sec.
SP (Higher is Better)

-0,000

0 — e — — *Y
2007 200 2010 2012 2013 2014

Intel® Xeon™ Intel® Xeon™ Intel® Xeon™ Intel® Xeon™ Intel® Xeon™
Processor 9 Processor Processor Processor Processor
X5472 Intel® Xeon™ X5680 E5-2600 E5-2600 v2 E5-2600 v3
formerly Processor formerly family formerly family formerly family formerly
codenamed X5570 codenamed codenamed codenamed codenamed
Harpertown formerly Westmere Sandy Bridge Ivy Bridge Haswell
codenamed
Nehale
m ) .
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, Configurations for
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult Binomial Options SP
other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other at the end

products. For more information go to http://www.intel.com/performance

of this presentation



http://www.intel.com/performance

Data-Driven Threading Design
Intel® Advisor XE — Thread Prototyping

0 T o4 25% 25%
125% 125%

Have you:
n Tried th readin g an app, but seen llttle 1264 Scalab"“waaxmu S L:VZ?lei;i?.;TlsleEl?nifs)Ar:"lgo.iilrlar:in[Task]
performance benefit? - T i i
= 34 ! L e
= Hit a “scalability barrier"? Performance : = STIT74 e LT
gains level off as you add cores? : 2 I 5 5

* Delayed a release that adds threading
because of synchronization errors?

Target CPU Count

Breakthrough for threading design:
= Quickly prototype multiple options

" Project scaling on larger systems Add Parallelism with Less Effort,

= Find synchronization errors before Less Risk and More Impact
implementing threading

= Separate design and implementation - el e
Design without disrupting development

intel‘ . 16



http://intel.ly/advisor-xe

Data Driven Vectorization Design

Intel® Advisor XE — Vectorization Advisor

Have you:

=  Recompiled with AVX2, but seen little benefit?

= Wondered where to start adding vectorization?

= Recoded intrinsics for each new architecture?

= Struggled with cryptic compiler vectorization messages?
Breakthrough for vectorization design

= What vectorization will pay off the most?

= What is blocking vectorization and why?

= Are my loops vector friendly?

= Will reorganizing data increase performance?

= |sit safe to just use pragma simd?

More Performance
Fewer Machine Dependencies

® Threading and Vectorization Survey o

EMALEWE & Survey Report

{ Suitability Report # Comrectness Report ,# Memory Access Patterns

Intel Advisor XE 2016

Filter by Loop Type | Vectorized Mot Vectorized Filter by Source [All ]z\ Filter by Module [AI]I\
Egnctinn Eallslle=and Self Time | Total Time Memory Compiler Vectorization = = Vectorized Loops
ops analysis | oop Type | Gain Estimate
P [loop at mmult se... 10.040s 10.040s |m] Vectorized ... 2.19727 SSE2
P [loop at mmult_serial.cp... 0.000s 10.100s Scalar SSE2
b [loop at mmult_serial.cp... 0.000s 10.100s Scalar
b [loopin __libc_start_mai... 0.000s 10.100s Scalar
I B
Top Down
Function Call Sites and Total Time . ) Hot  Vector... ® Location
Loops % Total Time | Self Time | o) o0 C
P i £ Source Loc... | Module
~ Total 100.0% 10.100s 0s
=~
<& [loopin _ libc_st... 100.0% 10.100s 0s libc-2.12.50
100.0% 10.100s 0s mmult_seri... 1_mmult_serial
100.0% 10.100s 0s ) mmult_seri... 1_mmult_serial
<& [loopatm... 100.0% 10.100s 0s [@ | SSE2 mmult_seri... 1_mmult_serial
~multiply_d 100.0% 10.100s 0.06005 mmult_seri... 1_mmult_serial
b @ [loop ... 99.4% 10.040s5 10.0400s & |SSE2 mmult_seri ... 1_mmult_serial




The Right Data At Your Fingertips

Get all the data you need for high impact vectorization

Filter by which
loops are

What prevents

Trip Counts =
vectorization?

vectorized!

M| Where she 1dd vectorization and/or threading parallelism? & Intel Advisor XE 2016

¥ Refinernent Reports & Annotation Report

Mot Vectorized FILTER: | All Madules A
) ) ) . Trip o Wectorized Loops "
Function Call Sites and Loop & | @ Vectorlssues Self Tirnew | Total Time S Loop Type Withy Mo Wectorization? V -
ecto...| Efficiency |Vect0rL..
12O [loop at stl_algo.hed 740 in stdute.. [] 0170:1 0.170:1 Sralar B non-vectarizable loap ins...
=0 [loap at loppstl.cpp:2449 in 5234 ¥ 2 Ineffective peeledfrem., 01705 017051 124 Collapse Collapse B 4
i+ [0 [loop g loopstl.cppi2dd9in s ... [] 015051 015051 12 Wectorized (Body) AMK 4
1O [loop Mloopstl.cpp:24d9ins .. [] 0.020s1 002051 4 Rernainder
3O [loop atapstl.cpp:7900in vas_] | [] 017051 0170s1 500 Scalar B vectorization possible but... 4
[loop afopstl.cpp:3500 in s2 ... ¢ 1High vector register .. 0.160s | 0.160s1 12 Expand Expand AVX 8
[loop #Mopstl.cpp:3891 in 5279 ] @ 2 Ineffective peeledfrern., 015051 015051 125; 4 Expand Expand s e |8
opstl.cpp:6249in s414_] 0.1505 | 015051 12 Expand Expand AN, 4
10 [loog |_nurmeric.hi247imstd . [] @ 1Assured dependency... 015051 0150s1 49 Scalar @ vector dependence preve ... w

Focus on What Which Vector

U vectorization instructions are How efficient

is the code?

loops issues do | being use?
have?



4 Steps to Efficient Vectorization

Intel® Advisor XE — Vectorization Advisor

1. Compiler diagnostics + Performance 2. Guidance: detect problem and
Data + SIMD efficiency information recommend how to fix it

&2 Issue: Peeled/Remainder loop(s) pre

ent
SfF Total Compiler Vectorization @ 8 All or some source loop iterations are not executing in the kernel loop. Improve performance by moving
Function Call Sites and Loopsa. T T z source loop iterations from peeled/remainder loops to the kernel loop. Read more at Vector Essentials,
ime  Time Loop Type Wby Mo Vectoriztion? Utilizing Full
op in manCForalLambidaloops] 18 008 [ Scalar et dependence prevents vector.. Recommendation: Align memory access
[#[loop in mnCForallLambdal oaps] 01405 37445 [] Scalar inner loop was already vectotized Projected maximum performance gain: High

BV loop In std:_Complex hase cdouble,struct C_double complex>:i.. | 00315 0.0314 W Vectorized (Rody) Projection confidence: Medium
The compiler created a peeled loop because one of the memory accesses in the source loop does not
Vectorized SSE; 33E2 Loop processing Float3Z; Floatfd data type|s] having Divisions; Square Roots operations start at a data boundary. Align the memory access and tell the compiler your memory access is aligned.
Peeled loop; loop stuts were reordered This example aligns memory using a 32-byte boundary.

op in stdsbasic_string <chan,struct steuchar_traits<chars,class stdallo,. 00005 5440, [] Scalar nonstandard loop is not 3 vectoriza . O aeer
op in stdzbasic_string <char,struct stdzchar_traits echarx,class stdzallo.. 0000 5440.., [ Scalar nonstandard loop is not avectoriza ., array = (float *)_sm_malloc(ARRAY_S:
([[loop in stedznurn_put<char,class steiastreambuf iteratoracharstruct st 0.000s 02345 [ Stalar norstandard loop i not a vectoriza ., 1/ Somewhere else

__assume_aligned(array, 32);
/7 Use array in loop

eof (float), 32);

3. Loop-Carried Dependency Analysis 4. Memory Access Patterns Analysis

Site Name Site Function Site Info Loop-Carried Dependencies Strides Distribution Access Pattern
loop_site 203 runCRawloops runCRawloops.coc1063 @ RAW:L No information ble No information available
loop_site 139 runCRawlLoops runCRawlLoops.coc622  No information available 139%736% / 29I Mixed strides

D @ Type Site Name  Sources Modules  State loop_site 160 runCRawLoops runCRawloops.0oc925  No information available 100%/0%/0% | All unit strides

P @ Parallel site information site2 dqtest2.cpp dgtest2 o Nota problem | oo acces: pattems

P2 @  Read after wiite dependency site2 dgtest2.cpp dotest2 R Mew D ®  Stidew Type Source Modules  Alignment

P3 @ Read after wite dependency site2 dqtest2.cpp dqtest2 Re Mew P2 @ 001 Unk stiide tunCRawl.oops.co5d | icals ere

[Pa | x| writs after write dependency site2 datest2.cpp datest2 | /iNew

P53 @ Wiite after wiite dependency site2 dgtest2.cpp dqtest2 Re Mew

P6 @ Wiite after read dependency site2 dotest2.cpp dqtest2 Re Mew av5] @ Jo0 ok e nCRaatoiR el | abim

P7 @ \Write after read dependency site2 dqtest2.cpp: idle.h dqtest2 Re Mew 530 @  -1575;-63; -26; -25; -1; 0; 1; 25; 26;63; 2164801 Variable stride runCRawLoops.coc628 _lcals.exe

pUp] (2] += b(31][41]:




1. Compiler diagnostics + Performance
Data + SIMD efficiency information

F
Time  Time

orallL

.

20



Efficiently Vectorize your code

Intel Advisor XE — Vectorization Advisor

# Where should | add vectorization and/for threading parallelism? & Intel Advisor XE 2016
& Sursey Report Refinement
Elapsed tirme: 54445 | | Wectorized Mot Wectorized FILTER: | All Modules ~ Al Sources ha Q
Trip Wectorized Loops &
Function Call Sites and Loops & | G Vectorlssues Self Timew | Total Tirne Loop Type Wby Mo Vectorization?
Counts \Iectom‘ Efficiency ‘\u‘ectorL‘.
i+ [loop st stl_algo.h:A740 in stdutr... [ 017051 017051 Sralar B non-vectorizable loop ins ...
S [loop at loopstl.cpp:2449 in 5234 ] W Z Ineffective peeled/rern..  0.170s] 01701 12; 4 Collapse Collapse v R0 a4
1+ [ [loop at loopstlcpp2ddSins.. [ 015051 015051 12 Wertorized (Body) AN 4
20O [loop at loopstleppi2ddins .. [] 0.0205 | 0.020s1 4 Rernainder
220 [loop st loopstlepp: 7900 inwas ][] 017051 017051 500 Scalar & vectorization possible but . 4
[loop at loopstl.cpp:3509 in s2 ... ¥ 1High vector register ... 0.160s| 0.160s| 12 Expand Expand AYX 8
[loop at loopstlopp:3897 in 5279 ] @ 2 Ineffective peeled/frern .. 015051 015051 1234 Expand Expand A E g
lloap at loapstlcpp:6249 in s414_] 01505 | 015051 12 Expand Expand s o |4
>0 [loop at st_numeric.h:247 instd... [] @ 1Assumed dependency... 015051 015051 49 Scalar & vector dependence preve . ©
4 < >
Source 'y a
Line | Source Tatal Tirme | B | Loop Titne ‘ % | =
3504 forttime_ (stl):
3505 i_ 1 = "ntimes:
3506 B for (ml = 1; ml €= i 1; +nl) 00105 | 0.200s |
[loop at loopstl.cpp:3s06 in 2273 ]
Scalar Loop. Not vectorized: inner loop was already wectorized
No loop transformations were applied
{
i 2= "n;

0.0105 | 0.160s |

[loop at loopstl.cpp:3509 in 5273 ]
Vectorized 4V¥ Loop processing Float3Z; Floatéd: Int32 data type(s) having Inserts; Extracts; Masked 5t

Selected (Total Tirme): 0.010s W




Background on loop vectorization

A typical vectorized loop consists of This is where we want our
loops to be executing!

Main vector bod

* Fastest among the three!

Optional peel part

* Used for the unaligned references in your loop. Uses Scalar or slower vector

Remainder part

* Due to the number of iterations (trip count) not being divisible by vector
length. Uses Scalar or slower vector.

Larger vector register means more iterations in peel/remainder

* Make sure you Align your data!




Intel Advisor XE shows how much time you are spending in the various
parts of your loops!

are 0 ¥ add = D atlo and;/o 2ead ] paralle L]

x Survey Report

| Elapsed time: 8,525 | | Vectorized | | Mot Vectorized | FILTER: | All Modules v | | All Sources A
Function Call Sites and Loops & | @ Vectorlssues Self Timew Total Time Loop Type :I"-fhy N.o —
ectorization?
=1 [loop at fractal.cpp:179 in <lambdal>zop ... ¢ 4 High vector ... 0,013s] 12,020s @8 Collapse Collapse
] [loop at fractal.cpp:179 in <lambdal>no .. ®  Serialized use.. 001351 11,2815 T | Vectorized (Body)

i+ [loop at fractal.cpp:179 in <lambdal=zo... ¢ 2 Data type co.. 0,000s | 0,163s1 Peeled

i+ [loop at fractal.cpp179 in <lambdal>zo .. g 2 Data type co .. 0,000z | 0,576z Remainder
i+ [loop at fractal.cpm:177 in <lambdal>zoper.. [ | | '@ 2 Datatype co... 0.010s | 12,0305 B Scalar
<

Line Source Total Time % Loop Time %
163 B for (int x = x0; X < x1; ++x) | 10.822s B

[loop at fractal.cpp:163 in <lambdal>::operator()]
Scalar Loop. Not vectorized: outer loop was not auto-vectorized: consider usg
No loop transformations were applied

164 B for (int ¥ = ¥0; ¥ < wl; ++y) { 10,8225 =
[loop at fractal.cpp:l164 in <lambdal>::operator()]
Scalar Loop. Not vectorized: wectorization possible but seems inefficient. Us

Loop was unrolled by 2

fractal data array[x - x0][y - y0] = calc_one_pizel(x, ¥, 10.822s (O

167 }

168 for (int v = ¥0, v_temp = 0; ¥ < yl; ++y, ++y_temp) |

169 area.set_pos(0, v - y0);

170 for (int x = x0, x temp = 0; x < xl; ++x, +tx_temp) {
17 area.put_pixel (fractal_data array[x_temp] [y_temp]):
172 }

173 } 0.196s |




2. Guidance: detect problem and
recommend how to fix it

Zﬁ Pl |ssue: Peeled/Remainder loop(s) present

All or some source loop iterations are not executing in the kernel loop. Improve performance by moving

@ 8 source loop
|

Recommendation: Align memory access

Projected maximum performance gain: High
Projection confidence: Medium

The compiler created a peeled loop because one of the memory accesses in the source loop does not
start at a data boundary. Align the memory access and tell the compiler your memory access is aligned.
This example aligns memory using a 32-byte boundary

float *arra
array (fl

// Somewher
__assume_al
Use array in loop

24



Get Specific Advice For Improving Vectorization

Intel® Advisor XE — Vectorization Advisor

Intel Advisor XE 2016

8 Where should | add vectorization and/or threading parallelism?

Summary IxS.ur\.reg.r L8 # Refinement Reports  # Annotation Report

o,

Elapsed time: 8,815 || Vectorized Mot Vectorized FILTER: |All Modules ¥ | | All Sources v
~

Vectorized Loops

Total Time Loop Type | Why Mo Vecterization?

Function Call Sites and Loops

‘u‘ecto...l Estim... |‘u‘ector Len

11,460 B Scalar
11,460 BB Scalar

1+ [loop at fractal.cpp:179in <lambdal>ze.. [| @ 2Datatype co.. 0,000s | 202250 Remainder
w

‘¢ Recommendations | ©

a
gl |ssue: Ineffective peeled/remainder loop(s) present
All or some source loop iterations are not executing in the loop body. Improve performance by moving source loop iterations from
peeled/remainder loops to the loop body.
() Disable unrolling . .
The trip count after loop unrolling is too small compared to| AdV|SOr XE ShOWS h|nts to move Qg
factor using a directive. . .
ICL/ICC/ICPC Directive | IFORT Directive Iterations to vector bOdy
#pragma nounroll IDIRS NOUNROLL
#pragma unroll IDIRS UNROLL
Read More:
e User and Reference Guide for the Intel C++ Compiler 15.0 > Compiler Reference > Pragmas > Intel-specific Pragma
Reference > unroll/nounroll. v




Don't Just Vectorize, Vectorize Efficiently

See detailed times for each part of your loops. Is it worth more effort?

0 C add g 0 atlio and/o 2a0 g paralie -

x Survey Report

| Elapsed time: 8,525 | | Vectorized | | Not Vectorized | I:l FILTER: | All Modules v | | All Sources W
. . . . Why No
Function Call Sites and Loops & | @ Vectorlssues Self Timew Total Time Loop Type Vectorization?
=Y [loop at fractal.cpp:179 in <lambdal>:op... ‘¢ 4 High vector ...  0,013s] 12,020s B Collapse Collapse
U] [loop at fractal.cpp:179 in <lambdal>:o.. ®  Serialized use.. 0,013s] 11,2815 1 | Vectorized (Body)

15O [loop at fractal.cpp: 179 in <lambdal=2o... ¢ 2 Datatypeco..  0,000s] 0,163s| Peeled

1+ [loop at fractal.cpp:179 in <lambdal>:o.. 'y 2 Datatypeco... 0,000s| 0,576s) Remainder
1+ O [loop at fractal.cpp:177 in <lambdal=zoper.. [ |% 2Datatypeco..  0,010s 12,0305 BB | Scalar

£

intel‘ . 26




Critical Data Made Easy Knowing the time

. spentin a loop is not
Loop Trip Counts enough!

« [ Where should | add vectorization and/or threading parallelism? I Intel Advisor XE 2016

Summary m Survey Report [ECSMETHTEGTT ts & Annotation Report | Suitabili*
: B

| Program time: 12,825 | | Vectorized | | Mot Vectorized | ¥ | |All Sources ¥

Trip Counts Compiler Vectorization

Function Call Sites and Loops Self Timew | Total Time % B B o
Median | Min | Max | Call Count | Loop Type Why Mo Vectorization
=1 [loop at Multiphy.c:53 in matvec] 11,008 @D 11508 I @1 Collapse Collapse
i+ [ [loop at Multiply.c:33 in matvec] 18508 11.851-mm [ @1 101 10 10 12000000 Wectorized (Body) wector dependence p
i+ [ [loop at Multiply.c:33 in matvec] 0.047s1 0.047s1 ™ 3 3 3 1000000 Wectorized (Body)
i:[loop at Multiply.c:33 in matvec] 0.413s] 0.413s1 1 101 10 101 Scala
&V [loop at Multiply.c:45 in matvec] 12.373s—
0.016s1 124830 [ Scalar vector dependence p

i:[loop at Driver.c:146 in main]

Check Loop is iterating Since the loop is
actual trip 101 times but called so many

1.1 Find Trip Counts counts called > million times it would be
Find how many iterati . are executed. t|mes a blg Win |f we

= -
can get it to

Command Line 0
vectorize.



3. Loop-Carried Dependency Analysis

Site Name  Sources Modules  State
Parallel site information site2 dgtest2.c dgtest2  Not a problem
Read after write dependency site2 dgtest2.c dqtest2 Re Mew
Read after write dependency site2 dgtest2
@ Wiite after wiite dependency site2 datest2.cpp
@  Wiite after read dependency site2 dgte dotest2
@  Write after read dependency site2 datest2.cpp: idle.h dgtest2 R Mew




Is It Safe to Vectorize?

Loop-carried dependencies analysis verifies correctness

« M Where should | add vectorization and/or threading parallelism? I Intel Advisor XE 201¢
Summary a SIGUA LG # Refinement Reports & Annotation Report | Suitability Report
| Program time: 12,825 | | Vectorized | | Mot Vectorized | FILTER: | All Modules v | | All Sources ¥ o,
Compiler Vectorization
Functien Call Sites and Loops Self Timew | Total Time ] @ | Trip Counts —
Leop Type Why Ne Vectorization?

i-[ [loop at Multiply.c:33 in matvec] 0.047s1 0.0d47s1 O 3 Vectorized (Body)
i+ [loop at Multiply.c:53 in matvec] 0.413s1 0.413s1 [} 101 Scalar
= [loop at Multiply.c:45 in matvec] 0.108z1 12,373 @1 Collapse Collapse

> [ [loop at Multiply.c:45 in matvec] 0.078z1 1930w [ 12 Vectorized (Body)

i+ [loop at Multiply.c:43 in matvec] 0.031s1 044451 ] 2 Remainder

[loop at Driver.c:146 in main] 12483 1 vector dependence prevents vectoriza...

Select loop for
2.1 Check Correctness Correct

Identify anc -carried dependencies

for marked he reported problems. AnalyS|S and

Vector Dependence
prevents
Vectorization!

press play!

Command Line




Data Dependencies — Tough Problem #1

Is it safe to force the compiler to vectorize?

Data dependencies

for (i=0;i<N;i++) // Loop carried dependencies!

*C[i];// Need the ability to check if it

// it is safe to force the compiler

Issue: Assumed dependency present

The compiler assumed there is an anti-dependency (Write after read - WAR) or true dependency (Read after write - RAW) in the
loop. Improve performance by investigating the assumption and handling accordingly.

() Enable vectorization
Potential performance gain: Information not available until Beta Update release
Confidence this recommendation applies to your code: Information not available until Beta Update release

The Correctness analysis shows there is no real dependency in the loop for the given workload. Tell the compiler it is safe
to vectorize using the restrict keyword or a directive.

ICL/ICC/ICPC Directive IFORT Directive Outcome

#pragma simd or #pragma omp simd | !DIRS SIMD or ISOMP SIMD | Ignores all dependencies in the loop
#pragma ivdep IDIRS IVDEP Ignores only vector dependencies (which is safest)

Read More:
e User and Reference Guide for the Intel C++ Compiler 15.0 > Compiler Reference > Pragmas > Intel-specific

Pragma Reference >
o ivdep
o omp simd




Correctness — Is It Safe to Vectorize?

Loop-carried dependencies analysis Received recommendations to force
vectorization of a loop:

™| Check for loop-carried dependencies in your application &

urmmary -, Survey Report & Annotation Report | Suitability Report 1 . Mark‘u p th e lOOp and CheCk fOF

Site Mame Site Function Site Info Loop-Carried Dependencies Strides Distribution  Access Pattern

ot i o @ Bt v | S s the presence of REAL dependencies

Detected 2. Explore dependencies in more
dependencies details with code snippets

In this example 3 dependencies were
detected

« RAW - Read After Write

e WAR - Write After Read

D Description  Source Function Module  State
[EIX17 Read mainepp? main test_Texe P New
20 k += a[s9]; . .
ERR * WAW — Write After Write
23 k + B
2a B %= a[5);

BT?QM imiﬂpw - Source‘lines with Read and ThiS iS NOT a gOOd
“ e Write accesses detected .
candidate to force

vectorization!




4. Memory Access Patterns Analysis

Loop-Carried Dependencies  Strides Distribution Access Pattern

No information available No information available
139%736% / 2T Mixed strides
100%/0%/0% | All unit strides

SiteName  SiteFunction SiteInfo
loop_site 203 runCRawLoops runCRawLoops.coc1063 @ RAW:L
loop_site 139 runCRawLoops runCRawlLoops.coc622  No information available

loop._site 160 runCRawloops | runCRawloops.00c925  No information available

Memory Access Patterns
Stride v Type Source Modules  Alignment
0:0:1 Unit stride runCRawLoops.coc637 cals.exe

plipll

#p23 @ 00 Unit stride runCRawloops.coc638  Icals.exe

=p30 @ -1575; -63;-26; 1; 0; 1; 25; 26; 63; 2164801 Variable stride runCRawl.oops.coc628  Icals.exe

Plip] (2] += B[31][1]:




Non-Contiguous Memory — Tough Problem #2

Potential to vectorize but may be inefficient

= Non-unit strided access to arrays
for (i=0;i<N; ) //Incrementing “i” by 2 is not unit stride
//We need a way to check how we are
//accessing memory.
» Indirect reference in aloop
for (i=0;i<N;i++)

= C[i]*D[i];//We have to decode B[i] to find out
//which element of A to reference

(inter . 33




Improve Vectorization

Memory Access pattern analysis

g Survey Report

| Elapsed time: 8,525 | | Vectorized | | Mot Vectorized | I:I FILTER: | All Modules ¥ | |All Sources v

Function Call Sites and Loops & Loop Type Kgof:zation?

=Y loop at fractal.cpp:179 in <lambda>:op... 0.013s| 12,020s =0 Collapse Collapse
0,013s 11,2815 | Vectorized (Body)

@ [loop at fractal.cpp:179 in <lambdal>zo ...
1> [loop at fractal.cpp:179 in <lambdal>zuo ...
i+ [loop at fractal.cpp:179 in <lambdal=zo...
1> [loop at fractal.cpp:177 in <lambdal>zoper...

0,0005 | 0,163s1 Peeled

@gDatatypeco... 0,000s | 0,576s1 Remainder
[] ¥2Datatypeco..  0,010s] 12,0305 I Scalar

<

2.2 Check Memory Access Patterns
nd explore comp en
rnark;
reported problems

- jLEI Run Memory Access Patterns analysis,
just to check how memory is used in the

loop and the called function




Find vector optimization opportunities

Memory Access pattern analysis

0 2pp £} O L]

ﬁ Refinement Reports

Site Name Site Function Site Info Loop-Carried Dependencies | Strides Distribution Access Pattern
loop_site_ 79 | operator() fractal.cpp:179  Ne information available 100% / < 1,0000% / ... Mixe

oop operator() ol o info o h 00% / 0%/ 0% e d
loop_site 94 | operator() fractal.cpp:179 Mo information ayaila

Memaory Access Patterns Report

| |stride | Typa

All memory accesses are unlform with zero unit stride, so
the same data is read in each iteration

We can therefore declare this function using the omp

P13 0 i stride
=P21 0 Unit stride
[T color_t color:
&5
13 fx0 = x0 - size_x / 2.0%£;
87 fyo = y0 - size vy / 2.0£;
[i1:] fx0 = fx0 / magn + cx;
=p24 0 Unit stride fractal.cpp:62 fractal.exe
1 fx0 = x0 - size x / 2.0£7
a7 fvo = y0 - size vy / 2.0£;
[:1:] £x0 = fx0 / magn + cx;
L] £yl = fy0 / magn + cy;
70
P27 0 Unit stride fractal.cpp:69 fractal.exe
P30 0 Unit stride fractal.cpp:74 fractal.exe v




Quickly Find Loops with Non-optimal Stride

Memory Access pattern analysis

n Q u i C kly id e ntify « A Check memory access patterns in your application & Intel Advisor XE 2014

Summary - S eport ﬂRaﬁnementRaports C Al ce: fractal.cpp & An Suitability Report

loops that are good’ Site Mame ‘SiteFun:tion ‘S\telnfo

loop_site_ 54 operator() fractal.cppi164 @ Mo dependencies found Mo information available No information available

b ad O r m iXe d loop_site 123 operator() fractal.cpp:164 No information available 100% /0% / 0% All unit strides
.

| Loop-Carried Dependencies | Strides Distribution Access Pattern

» Unit stride memory
accesses are
preferable.

Memory Access Patterns Report

[stride [ Type Source Modules | Alignment
Parallel site information fractal.cpp:164 fractal.exe
EP3 @ o Unit stride fractal.cpp:100 fractal.exe
= Find l d dat A
INa unatigne ata 55 geaai
100 int b = (int) (256 * mu);
101 int g = (b / 8);
102 int r = (g / 16):
Ep4 | @ 0 Unit stride fractal.cpp:164 fractal.exe
162
163 for (int x = x0; X < x1; ++x) [
164 for (int v = y0; v < yl; ++v) {
165 fractal_data_array[x - x0][v - v¥0] = calc_one_pixel(x, vy, tmp_max_ iterations, tmp_size x, tmp_si
166 i
@ o Unit stride fractal.cpp:164 fractal.exe
o o Unit stride fractal.cpp:165 fractal.exe
@ o1 Unit stride fractal.cpp:163 fractal.exe
=0 Unit stride fractal.cpp:60 fractal.exe
PPN P




GETTING STARTED



Before you analyze

Create Project

o FI [e_> NeW—> PrOJeCt vecsampple - Project Properties Ex

Analysis Target | Binary/Symbol Search | Source Search

B j%rvsey#\ Targettype: | Survey/Suitability Launch Application v
H urve

Survey/Suitability Launch Application
p Count An. s i‘igure the application executable (target) to analyze. Press F1 for more details.
‘ @ No application executable (target) file specified.

Application parameters:

Modify...
a2 - directory as working directory
Create a Project :
Browse...
. onment variables:
Project name: | vecsampplg | Modify...
_ : filing mode:| Auto v
Location: Chadvisor_samples\vec_samples Browse...
Create Project Cancel )
< >

oK Cancel




Analyze what loops you are spending your time in and how they
have been vectorized!

1. Survey Target

add efficient vectori

=t Click Collect

1.1 Find Trip Counts

Find how many iterations are executed.

Survey Report

Mark Loops for Deeper Analysis

Intel Advisor XE 2016

& Annotation R

|[a | FILTER: | All Modules v| A sources v a
Vectorized Loops Instruction Set Analys
& |Vectorlssues |Self Timew |Total Time | Loop Type | Why No Vectorization? . N . . N
Vecto...| Estim... |‘u‘ect0r Length Compiler Estimated Gain | Traits Data Types
[ @1Assumed .. 14.030s@ 14.030s@® Scalar & vector dependence .. Float64
] 0.58551 15.015s @ Scalar & outer loop was nota... Floatd
[ 0.000s1 15.035: @ Scalar & loop with function c... Floattd




All the data in one place

Top Recommendation Compiler
Down S Diagnostics
Top Down ) -]
Vectorized Loops InstrL
Function Call Sites and Loops Total Time % | Total Time Self Time | Loop Type | Why Mo Vectorization? - - - -
Vecto...| Vector Length Compiler Estimated Gain | Traits
= Total 100.0% B 15.043 @ Os
Efunc@0xbb2dacct 100.0% B 15.043 @ Os
Efunc@0x6b2dacfl 100.0% B 15.043 @ Os
= BaseThreadInitThunk 100.0% @ 15.043s @R Os
[=I_tmainCRTStartup 100.0% B 15.043s B Os
=Imain 99.0% @ 15.035s N Os
O [loop at Driver.c:145 99.9% B 15.035s D Os Scalar loop with function call ...
printf 0.0%! 0.001s1 0.0006s5
[ func@0x10150ef0 0.1%! 0.008s1 0.0076s




Next analyze how many times your loops are iterating and how
many times they are called.

1. Survey Target

Trip Counts

Median | Min | Max | Call Count Iteration Duration

50 50 50 101000000 < 0.0001s
101 101 o 1000000 < 0.0001s
TrEsamni 1000000 1000000 | 1000000 1 < 0.0001s
Mark Loops for Deeper Analysis
Select s in the 5
Trip Counts
& | Vectorlssues Self Timew Total Time - - . . Loop Type
Median | Min | Max | Call Count | Iteration Duration
i+ (0 [loop at Multiply.c:55 in matvec] [ @1Assumedde.. 14.030sE 14.030s@8 50 50 50 101000000 < 0.0001s Scalar
1+ (0 [loop at Multiply.c:44 in matvec] [ 0.985s 1 15.015s S | 101 101 101 1000000 < 0.0001s Scalar
0 [loop at Driver.c:145 in main] O 0.000s | 15,0355 1000000 1000000 | 1000000 1 < 0.0001s Scalar



Specify loops for deeper analysis

™ Where should | add vectorization and/or threading parallelism? o

Summary '5 SIS & Refinement Reports i Annotation Report ] Suitability Report

| Elapsed time: 13.47s | | | | (] | I:I FILTER: | All Modules ¥ |All Sources ¥
Loops ‘ & |Vectorlssues | Self Timew |Total Time | Loop Type | Why Mo Vectorization?

1+ (0 [loop at Multiply.c:55 in matvec] 1 Assumed .. 14.030s @ 14.030s @@ Scalar B vector dependencep...
i+ (0 [loop at Multiply.c:44 in matvec] 0.985s1 15.015s B Scalar B outer loop was not a...

@ [loop at Driver.c:145 in main] 15.0355 | Scalar




Deeper analysis

Check dependencies

1. Survey Target

o et vectarate We marked 3 loops for a
dependency analysis. Two of
the loops had no dependencies.
G E T One of the loops has Read-

After-Write dependency and

threading

Find he erations are executed.

Click Collect can't be vectorized.

™| Check memory access patte” . your application Io

Summary - 5 port " efinement Reports  JEEEULTEITl R S

Site Location Loop-Carried Dependencies

Strides Distribution | Access Pattern Site Name

leop at Driver.c:145 in main @ Mo dependencies found Mo information available Mo information available loop_site 6
loop at Multiply.c:44 in matvec @ Mo dependencies found Mo information available Mo information available loop_site_10

loop at Multiply.c:55 in matvec | & RAW:1 Mo information available Mo information available loop_site_8




Deeper analysis

Memory Access Pattern analysis

1. Survey Target

Stride distribution

M’ Check memory access patterns in your appli n O

Summary - Survey Report % Refinement M=yl & An ation Report

Site Location | Loop-Carried Dependencies | Strid®s Distribution |Access Pattern Site Name
loop at Driver.c:145 in main @ Mo dependencies found 1005 /0% /0% = All unitstrides  loop_site_6
loop at Multiply.c:44 in matvec | @ Mo dependencies found 85% / 15% /0% Mixed strides loop_site_10
loop at Multiply.c:53 in matvec & RAW:1 4%/ 26% /0% Mixed strides loop_site_8
Memory Access Patterns Report
1D Type Source Mested Function Medules Alignment

e
EP3

! Parallel site information | Driver.c:143
P9

matri_vector_multipli

47

Unit stride Driver.c:157 matrix_vector_multiplication_c.exe

P10 Unit stride Multiply.c:39 matvec matrix_vector_multiplication_c.exe
P12 Unit stride Multiply.c:44 matvec matrix_vector_multiplication_c.exe
=IP14 Unit stride Multiply.c:43  matvec matrix_vector_multiplication_c.exe

43 int i, 37

44

45 for (1 = 0; 1 < sizel; i++) {

18 B[i] = 0:

Click Collect






Configurations for Binomial Options SP

o Binomial Options SP (Higher is Batter) Optimization Notice
o . Intel's compilers may or may not optimize to the same degree for non-Intel
k] E“‘M “‘“‘:’mﬂ microprocessors for optimizations that are not unique to Intel microprocessors. These
s } optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
H 179 - Sealar Intel does not guarantee the availability, functionality, or effectiveness of any
- e Single Thread v o . N
B soow — . optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
sinie fluead - scatar optimizations in this product are intended for use with Intel microprocessors. Certain
e s S— optimizations not specific to Intel microarchitecture are reserved for Intel
IZ_E.F;I('{ .2-[-,1 2 2?:!3‘ ‘2_914" microprocessors. Please refer to the applicable product User and Reference Guides for
e =0 = Procczsar more information regarding the specific instruction sets covered by this notice. Notice
4 crcenamea e Faenince pl o revision #20110804
larpertown Mehalem Westmers Ivy Oridge Haswel

Performance measured in Intel Labs by Intel employees

Platform Hardware and Software Configuration

Unscaled
Core L1 Memory H/W
Frequenc Cores/ Num Data L1I L2 L3 Frequenc Memory Prefetchers  HT Turbo O/S Operating Compiler
Platform y Socket Sockets Cache Cache Cache Cache Memory y Access Enabled Enabled Enabled C States Name  System Version
Intel® Xeon™ Disable Fedora 3.11.10- icc version
5472 Processor 3.0 GHZ 4 2 32K 32K 12MB None 32GB 800 MHZ UMA Y N N d 20  301.fc20 14.0.1
Intel® Xeon™ 1333 Disable Fedora 3.11.10- icc version
X5570 Processor 2.93 GHZ 4 2 32K 32K 256K 8MB 48GB MHZ  NUMA Y Y Y d 20  301.fc20 14.0.1
Intel® Xeon™ 1333 Disable Fedora 3.11.10- icc version
X5680 Processor 3.33GHZ 6 2 32K 32K 256K 12MB 48MB MHZ NUMA Y Y Y d 20  301.fc20 14.0.1
Intel® Xeon™ E5 1600 Disable Fedora 3.11.10- icc version
2690 Processor 2.9 GHZ 8 2 32K 32K 256K 20MB 64 GB MHZ  NUMA Y Y Y d 20  301.fc20 14.0.1
Intel® Xeon™ E5
2697v2 1867 Disable Fedora 3.11.10- icc version
Processor 27GHZ 12 2 32K 32K 256K 30MB 64 GB MHZ  NUMA Y Y Y d 20  301.fc20 14.0.1
Codename 2133 Disable Fedora 3.13.5- icc version

Haswell 22GHz 14 2 32K 32K 256K 35MB 64 GB MHZ  NUMA Y Y Y d 20 202.fc20 14.0.1




Legal Disclaimer & Optimization
Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results to
vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products.

Copyright © 2015y, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the
Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding

the specific instruction sets covered by this notice.
Notice revision #20110804

intel‘ . 47




experience
what's inside”



