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Optimization Notice

• Single Instruction Multiple Data (SIMD):

– Processing vector with a single operation

– Provides data level parallelism (DLP)

– Because of DLP more efficient than scalar processing

• Vector:

– Consists of more than one element

– Elements are of same scalar data types
(e.g. floats, integers, …)

• Vector length (VL): Elements of the vector

7

Vectorization
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• SIMD instructions:

 One single machine instruction for vector processing

 Vector lengths are fixed (2, 4, 8, 16)

 Synchronous execution on elements of vector(s)
 Results are available at the same time

 Masking possible to omit operations on selected elements

• SIMD is key for data level parallelism for years:

 64 bit Multi-Media Extension (MMX™)

 128 bit Intel® Streaming SIMD Extensions (Intel® SSE, SSE2, SSE3, SSE4.1, SSE4.2) 
and Supplemental Streaming SIMD Extensions (SSSE3)

 256 bit Intel® Advanced Vector Extensions (Intel® AVX)

 512 bit vector instruction set extension of Intel® Many Integrated Core 
Architecture (Intel® MIC Architecture) and Intel® Advanced Vector Extensions 512 
(Intel® AVX-512)

8

SIMD & Intel® Architecture
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SSE Vector Types

Intel® SSE

Intel® SSE2

4x single precision FP

2x double precision FP

16x 8 bit integer

8x 16 bit integer

4x 32 bit integer

2x 64 bit integer

plain 128 bit
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• Packed SSE instructions operate on all elements per vector

• Most of these instructions have scalar versions operating only on one 
element of vector

• Avoid scalar versions and only use packed instructions to exploit SIMD 
capabilities!

14

SSE Packed vs. Scalar

Scalar single-precision FP Addition:

addss xmm2, xmm1

single-precision FP data type
scalar execution mode 

+

a3 a2 a1 a0

b3 b2 b1 b0

a3 a2 a1 a0+b0

Packed single-precision FP Addition:

addps xmm2, xmm1

single-precision FP data type
packed execution mode 

+

a3 a2 a1 a0

b3 b2 b1 b0

a3+b3 a2+b2 a1+b1 a0+b0

xmm1

xmm2

xmm2

xmm1

xmm2

xmm2
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AVX Vector Types

Intel® AVX

Intel® AVX2

8x single precision FP

32x 8 bit integer

16x 16 bit integer

8x 32 bit integer

4x 64 bit integer

plain 256 bit

4x double precision FP
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• High level language complex types can also be used, compiler cares about 
details (halves the potential vector length)

• Use 32 bit integers where possible, avoid 64 bit integers
(short & char types will be converted implicitly, though)

• Masking supported via dedicated registers (K0-7)
 No need for bit vectors or additional compute cycles

26

Intel® MIC Architecture Vector Types

16x single precision FP

16x 32 bit integer

8x double precision FP
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 Combines AVX and Intel® MIC Architecture!

29

Intel® AVX-512 Vector Types
In

te
l®

 A
V

X
-5

1
2

16x single precision FP

32x 16 bit integer

16x 32 bit integer

8x 64 bit integer

8x double precision FP

64x 8 bit integer

plain 512 bit

64 bit masks
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• Extended VEX encoding (EVEX) to introduce another prefix

• Extends previous AVX and SSE registers to 512 bit:

 32 bit: 8 ZMM registers (same as YMM/XMM)

 64 bit: 32 ZMM registers (2x of YMM/XMM)

• 8 mask registers (K0 is special)

 No penalty when switching between XMM, YMM and ZMM!

33

Intel® AVX-512 Registers

ZMM0-31 

512 bit

K0-7

64 bit

XMM0-15 

128 bit

YMM0-15 

256 bit3
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• KNL and future Intel® Xeon® processors 
share a large set of instructions

• But some sets are not identical 

• Subsets are represented by individual 
feature flags (CPUID) 

Future Knight
(KNL)

SSE

AVX

AVX2

AVX-512F

Future Intel® 
Xeon® 

processor

SSE

AVX

AVX2

AVX-512F

SNB

SSE

AVX

HSW

SSE

AVX

AVX2

NHM

SSE

AVX-512CD AVX-512CD

AVX-512ER

AVX-512PR AVX-512BW

AVX-512DQ

AVX-512VL

MPX,SHA, …

C
o

m
m

o
n

 I
n

s
tr

u
c
ti
o

n
 S

e
t 
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Intel® AVX-512 - Comparison
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• OS support is required due to the new (extended) register state

• At least the following OSes are needed to get Intel® AVX:

– Linux* kernel 3.15 or latest

– Microsoft Windows* 8 and later

– OS X*: unknown

Without OS support Intel® AVX-512 cannot be used even though the 
underlying processor supports it!

40

Operating Systems & Intel® AVX-512
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• Transform sequential code to exploit vector processing capabilities (SIMD) 
of Intel processors

 Manually by explicit syntax

 Automatically by tools like a compiler

44

Vectorization of Code

for(i = 0; i <= MAX;i++)

c[i] = a[i] + b[i];

+

a[i]

b[i]

c[i]

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]
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• How to express vectorization?

 Fortran and C/C++ have limited ways to express it

 But, Intel compilers use heuristics to vectorize

 There are extensions that allow expression of vectorization explicitly

 There are other, less portable ways…

• Select SIMD type:

 A specific SSE/AVX version also includes all previous versions

 Prefer AVX to SSE if available and possible; AVX also includes SSE

 Avoid mixing SSE and AVX when using intrinsics or direct assembly

 If target platform is not fixed/known Intel compiler can help producing multiple 
versions for different SIMD types:
 Runtime processor dispatching

45

Use Vectorization
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Many Ways to Vectorize

Ease of useCompiler: 
Auto-vectorization (no change of code)

Programmer control

Compiler: 
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler: 
OpenMP* 4.0 and Intel® Cilk™ Plus
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Many Ways to Vectorize

Ease of useCompiler: 
Auto-vectorization (no change of code)

Programmer control

Compiler: 
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler: 
OpenMP* 4.0 and Intel® Cilk™ Plus
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Auto-vectorization of Intel Compilers

..B1.2:

vmovupd (%rsp,%rax,8), %ymm0

vmovupd 32(%rsp,%rax,8), %ymm2

vmovupd 64(%rsp,%rax,8), %ymm4

vmovupd 96(%rsp,%rax,8), %ymm6

vaddpd 8032(%rsp,%rax,8), %ymm2, %ymm3

vaddpd 8000(%rsp,%rax,8), %ymm0, %ymm1

vaddpd 8064(%rsp,%rax,8), %ymm4, %ymm5

vaddpd 8096(%rsp,%rax,8), %ymm6, %ymm7

vmovupd %ymm1, 16000(%rsp,%rax,8)

vmovupd %ymm3, 16032(%rsp,%rax,8)

vmovupd %ymm5, 16064(%rsp,%rax,8)

vmovupd %ymm7, 16096(%rsp,%rax,8)

addq $16, %rax

cmpq $992, %rax

jb ..B1.2

...

Intel® AVX
..B1.2:

movaps (%rsp,%rax,8), %xmm0

movaps 16(%rsp,%rax,8), %xmm1

movaps 32(%rsp,%rax,8), %xmm2

movaps 48(%rsp,%rax,8), %xmm3

addpd 8000(%rsp,%rax,8), %xmm0

addpd 8016(%rsp,%rax,8), %xmm1

addpd 8032(%rsp,%rax,8), %xmm2

addpd 8048(%rsp,%rax,8), %xmm3

movaps %xmm0, 16000(%rsp,%rax,8)

movaps %xmm1, 16016(%rsp,%rax,8)

movaps %xmm2, 16032(%rsp,%rax,8)

movaps %xmm3, 16048(%rsp,%rax,8)

addq $8, %rax

cmpq $1000, %rax

jb ..B1.2

...

Intel® SSE4.2

void add(A, B, C)

double A[1000]; double B[1000]; double C[1000];

{

int i;

for (i = 0; i < 1000; i++)

C[i] = A[i] + B[i];

}

subroutine add(A, B, C)

real*8 A(1000), B(1000), C(1000)

do i = 1, 1000

C(i) = A(i) + B(i)

end do

end
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• Using vector intrinsic or SIMD intrinsic class inherently provides a 
guarantee of using SIMD instructions
However, this is highly platform dependent and complex

• Auto-vectorization mostly works out of the box
However, there are cases auto-vectorization does not work

• Intel® Cilk™ Plus Array Notation Extensions can alleviate both problems 
(C/C++ only):

 Deterministically making use of vectorization

 Easy to use with only minimal code changes

• OpenMP* 4.0 also provides extensions for vectorization (C/C++ & Fortran)

66

Vectorization with Language Extensions

double A[1000], B[1000], C[1000], D[1000], E[1000];

for (int i = 0; i < 1000; i++)

E[i] = (A[i] < B[i]) ? C[i] : D[i];

double A[1000], B[1000], C[1000], D[1000], E[1000];

E[:] = (A[:] < B[:]) ? C[:] : D[:];
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• Linux*, OS X*: -x<feature>, Windows*: /Qx<feature>

 Might enable Intel processor specific optimizations

 Processor-check added to “main” routine:
Application errors in case SIMD feature missing or non-Intel processor with 
appropriate/informative message

• Linux*, OS X*: -ax<features>, Windows*: /Qax<features>

 Multiple code paths: baseline and optimized/processor-specific

 Optimized code paths for Intel processors defined by <features>

 Multiple SIMD features/paths possible, e.g.: -axSSE2,AVX

 Baseline code path defaults to –msse2 (/arch:sse2)

 The baseline code path can be modified by –m<feature> or –x<feature>
(/arch:<feature> or /Qx<feature>)

71

Basic Vectorization Switches I
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• Linux*, OS X*: -m<feature>, Windows*: /arch:<feature>

 Neither check nor specific optimizations for Intel processors:
Application optimized for both Intel and non-Intel processors for selected SIMD 
feature

 Missing check can cause application to fail in case extension not available

• Default for Linux*: -msse2, Windows*: /arch:sse2:

 Activated implicitly

 Implies the need for a target processor with at least Intel® SSE2

• Default for OS X*: -msse3 (IA-32), -mssse3 (Intel® 64)

• For 32 bit compilation, –mia32 (/arch:ia32) can be used in case target 
processor does not support Intel® SSE2 (e.g. Intel® Pentium® 3 or older)

72

Basic Vectorization Switches II
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• Special switch for Linux*, OS X*: -xHost, Windows*: /QxHost

 Compiler checks SIMD features of current host processor (where built on) and 
makes use of latest SIMD feature available

 Code only executes on processors with same SIMD feature or later as on build 
host

 As for -x<feature> or /Qx<feature>, if “main” routine is built with
–xHost or /QxHost the final executable only runs on Intel processors

73

Basic Vectorization Switches III
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• SIMD features can also be set on a function/subroutine level via 
pragmas/directives:

 C/C++:
#pragma intel optimization_parameter target_arch=<CPU>

 Fortran:
!DIR$ ATTRIBUTES OPTIMIZATION_PARAMETER:TARGET_ARCH= <CPU>

• Examples:

 C/C++:

 Fortran:

74

Vectorization Pragma/Directive

#pragma intel optimization_parameter target_arch=AVX

void optimized_for_AVX()

{

…

}

function optimized_for_AVX()

!DIR$ ATTRIBUTES OPTIMIZATION_PARAMETER:TARGET_ARCH=AVX

…

end function
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• Disable vectorization:

 Globally via switch:
Linux*, OS X*: -no-vec, Windows*: /Qvec-

 For a single loop:
C/C++: #pragma novector, Fortran: !DIR$ NOVECTOR

 Compiler still can use some SIMD features

• Using vectorization:

 Globally via switch (default for optimization level 2 and higher):
Linux*, OS X*: -vec, Windows*: /Qvec

 Enforce for a single loop (override compiler efficiency heuristic) if semantically correct:
C/C++: #pragma vector always, Fortran: !DIR$ VECTOR ALWAYS

 Influence efficiency heuristics threshold:
Linux*, OS X*: -vec-threshold[n]
Windows*: /Qvec-threshold[[:]n]
n: 100 (default; only if profitable) … 0 (always)

79

Control Vectorization I
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• Verify vectorization:

 Globally:
Linux*, OS X*: -opt-repot, Windows*: /Qopt-report

 Abort compilation if loop cannot be vectorized:
C/C++: #pragma vector always assert
Fortran: !DIR$ VECTOR ALWAYS ASSERT

• Advanced:

 Ignore vector dependencies (IVDEP):
C/C++: #pragma ivdep
Fortran: !DIR$ IVDEP

 “Enforce” vectorization:
C/C++: #pragma simd or #pragma omp simd

Fortran: !DIR$ SIMD or !$OMP SIMD

When used, vectorization can only be turned off with:
Linux*, OS X*: -no-vec –no-simd –qno-openmp-simd

Windows*: /Qvec- /Qsimd- /Qopenmp-simd-

80

Control Vectorization II
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• Assembler code inspection (Linux*, OS X*: -S, Windows*: /Fa):

 Most reliable way and gives all details of course

 Check for scalar/packed or (E)VEX encoded instructions:
Assembler listing contains source line numbers for easier navigation

• Using Intel® VTune™ Amplifier:

 Different events can be selected to measure use of vector units, e.g.
FP_COMP_OPS_EXE.SSE_PACKED_[SINGLE|DOUBLE]

 For Intel® MIC Architecture: Use metric Vectorization Intensity

• Difference method:

1. Compile and benchmark with -no-vec –no-simd –qno-openmp-simd or / Qvec-
/Qsimd- /Qopenmp-simd-, or on a loop by loop basis via
#pragma novector or !DIR$ NOVECTOR

2. Compile and benchmark with selected SIMD feature

3. Compare runtime differences

83

Validating Vectorization Success I
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• Optimization report:

 Linux*, OS X*: -opt-report=<n>, Windows*: /Qopt-report:<n>
n: 0, …, 5 specifies level of detail; 2 is default (more later)

 Prints optimization report with vectorization analysis

 Also known as vectorization report for Intel® C++/Fortran Compiler before 15.0:
Linux*, OS X*: -vec-report=<n>, Windows*: /Qvec-report:<n>
Deprecated, don’t use anymore – use optimization report instead!

• Optimization report phase:

 Linux*, OS X*: -opt-report-phase=<p>,
Windows*: /Qopt-report-phase:<p>

 <p> is all by default; use vec for just the vectorization report

• Optimization report file:

 Linux*, OS X*: -opt-report-file=<f>, Windows*: /Qopt-report-file:<f>

 <f> can be stderr, stdout or a file (default: *.optrpt)
85

Validating Vectorization Success II
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Example novec.f90:

86

Optimization Report Example

1: subroutine fd(y)

2:   integer :: i

3:   real, dimension(10), intent(inout) :: y

4:   do i=2,10

5:     y(i) = y(i-1) + 1

6:   end do

7: end subroutine fd

$ ifort novec.f90 –opt-report=5

ifort: remark #10397: optimization reports are generated in *.optrpt

files in the output location

$ cat novec.optrpt

…

LOOP BEGIN at novec.f90(4,5)

remark #15344: loop was not vectorized: vector dependence prevents 

vectorization

remark #15346: vector dependence: assumed FLOW dependence between y 

line 5 and y line 5

remark #25436: completely unrolled by 9

LOOP END

…
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• See which levels are available for each phase:

 Linux*, OS X*: -qopt-report-help,
Windows*: /Qopt-report-help

• Select format:

 Linux*, OS X*: -qopt-report-format=[text|vs],
Windows*: /Qopt-report-format:[text|vs]

 text as textual and vs for Microsoft Visual Studio* IDE integration output

87

Optimization Report – Advanced I

$ icpc –qopt-report-help

…

vec: Vector optimizations

Level 1: Report the loops that were vectorized.

Level 2: Level 1 + report the loops that were not vectorized,

along with reason preventing vectorization.

Level 3: Level 2 + loop vectorization summary.

Level 4: Level 3 + report verbose details for reasons loop

was/wasn't vectorized.

Level 5: Level 4 + report information about variable/memory

dependencies preventing vectorization.

…
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Most frequent reasons:

• Data dependence

• Alignment

• Unsupported loop structure

• Non-unit stride access

• Function calls/in-lining

• Non-vectorizable Mathematical functions

• Data types

• Control depencence

• Bit masking

All those are common and will be explained in detail next!

94

Reasons for Vectorization Fails I
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Other reasons:

• Outer loop of loop nesting cannot be vectorized

• Loop body too complex (register pressure)

• Vectorization seems inefficient (low trip count)

• Many more

Those are less likely and are not described in the following!

95

Reasons for Vectorization Fails II
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Factors that prevent Vectorizing your code 

1. Loop-carried dependencies

for (i = 1; i < nx; i++) {

x = x0 + i * h;

sumx = sumx + func(x, y, xp);

}

2. Function calls (incl. indirect) 

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

for(int i = 0; i < x->bound; i++)

a[i] = 0;

}

3. Loop structure, boundary condition

4 Outer vs. inner loops

1.A Pointer aliasing (compiler-specific)

for(i = 0; i <= MAX; i++) {

for(j = 0; j <= MAX; j++) {

D[j][i] += 1;                  

}

}

void scale(int *a, int *b)

{   

for (int i = 0; i < 1000; i++) 

b[i] = z * a[i];

}

DO I = 1, N

A(I + M) = A(I) + B(I)

ENDDO

And others……

5. Cost-benefit (compiler specific..)
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Factors that slow-down your Vectorized code 

for (i = 1; i < nx; i++) {

sumx = sumx + 

serialized_func_call(x, 

y, xp);

}

2. Serialized or “sub-optimal” function calls

void doit(int *a, int *b, int

unknown_small_value)

{

for(int i = 0; i <   

unknown_small_value; i++)

a[i] = z*b[i];

}

3. Small trip counts not multiple of VL

4. Branchy codes, outer vs. inner loops

1.B Memory sub-system Latency / Throughput

for(i = 0; i <= MAX; i++) {

if ( D[i] < N) 

do_this(D);

else if (D[i] > M) 

do_that();

//…           

}

void scale(int *a, int *b)

{   

for (int i = 0; i < VERY_BIG; i++) 

c[i] = z * a[i][j];

b[i] = z * a[i];

}

5. MANY others: spill/fill,  fp accuracy trade-offs,
FMA, DIV/SQRT, Unrolling, even AVX throttling..

1.A. Indirect memory access

for (i=0; i<N; i++) 

A[B[i]] = C[i]*D[i]



Copyright ©  2016, Intel Corporation. All rights reserved. 
*Other names and brands may be claimed as the property of others.

Optimization Notice

Definition of data dependence:

There is a data dependence from statement S1 to statement S2

(written as S1  S2) if and only if:

• There is a potential execution flow from S1 to S2

• S1 and S2 reference a common memory location S1 or S2 write to

Note: S1 and S2 can be the very same statement

Data dependence classification:

• S1 
F S2: S1 writes, S2 reads: Flow Dependence

• S1 
A S2: S1 reads, S2 writes: Anti Dependence

• S1 
O S2: S1 writes, S2 writes: Output Dependence

99

Data Dependence

S1 X = …

S2 … = X

S1 … = X

S2 X = …

S1 X = …

S2 X = …
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Dependencies in loops become more obvious by virtually unrolling the loop: 

In case the dependency requires execution of any previous loop iteration, we 

call it loop-carried dependence. Otherwise, loop-independent dependence.

E.g.:

S1 
F S2: Loop-independent dependence

S2 
F S2: Loop-carried dependence
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Data Dependence in Loops

S1 A(2) = A(1) + B(1)

S1 A(3) = A(2) + B(2)

S1 A(4) = A(3) + B(3)

S1 A(5) = A(4) + B(4)

...

DO I = 1, N

S1 A(I+1) = A(I) + B(I)

ENDDO

S1 
F S1

DO I = 1, 10000

S1 A(I) = B(I) * 17

S2 X(I+1) = X(I) + A(I)

ENDDO
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• Disambiguating memory locations of pointers in C99:
Linux*, OS X*: –std=c99, Windows*: /Qstd=c99

• Intel® C++ Compiler also allows this for other modes
(e.g. -std=c89, -std=c++0x, …), too - not standardized, though:
Linux*, OS X*: -restrict, Windows*: /Qrestrict

• Declaring pointers with keyword restrict asserts compiler that they only 
reference individually assigned, non-overlapping memory areas

• Also true for any result of pointer arithmetic (e.g. ptr + 1 or ptr[1])

Examples:

105

Disambiguation Hints I

void scale(int *a, int *restrict b)

{   

for (int i = 0; i < 10000; i++) b[i] = z * a[i];

}

void mult(int a[][NUM], int b[restrict][NUM])

{ ... }
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Directives:

• #pragma ivdep (C/C++) or !DIR$ IVDEP (Fortran)

• #pragma simd (C/C++) or !DIR$ SIMD (Fortran)

For C/C++:

• Assume no aliasing at all (dangerous!):
Linux*, OS X*: -fno-alias, Windows*: /Oa

• Assume ISO C Standard aliasing rules:
Linux*, OS X*: -ansi-alias, Windows*: /Qansi-alias
Default with 15.0 and later but not with earlier versions!

• Turns on ANSI aliasing checker, too (thus recommended)

• No aliasing between function arguments:
Linux*, OS X*: -fargument-noalias, Windows*: /Qalias-args-

• No aliasing between function arguments and global storage:
Linux*, OS X*: -fargument-noalias-global, Windows*: N/A
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Disambiguation Hints II
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For Fortran:

• Assume no aliasing at all:
Linux*, OS X*: -fno-alias, Windows*: /Oa

• Assume Fortran Standard aliasing rules:
Linux*, OS X*: -ansi-alias, Windows*: /Qansi-alias
Opposed to C/C++ this is default since ever!

• No aliasing of Cray* pointers:
Linux*, OS X*: -safe-cray-ptr, Windows*: /Qsafe-cray-ptr
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Disambiguation Hints III
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• Optimization usually takes place individually for each procedure

• Dependency analysis of inter-procedural optimization (IPO) works across 
all procedures and thus allows global optimization

• Switch to turn on IPO for single file (one compilation unit)

 Linux*, OS X*: -ip

 Windows*: /Qip
Subset already default for optimization levels 2 and higher

• Switch to turn on IPO for all compilation units

 Linux*, OS X*: -ipo

 Windows*: /Qipo

• Example:
References of function arguments can be analyzed even if located in other 
compilation unit.
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Inter-Procedural Dependency Analysis
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Caveat with using unaligned memory access:

• Unaligned loads and stores can be very slow due to higher I/O because 
two cache-lines need to be loaded/stored (not always, though)

• Compiler can mitigate expensive unaligned memory operations by using 
two partial loads/stores – still slow
(e.g. two 64 bit loads instead of one 128 bit unaligned load)

• The compiler can use  “versioning” in case alignment is unclear:
Run time checks for alignment to use fast aligned operations if possible, 
the slower operations otherwise – better but limited

Best performance: User defined aligned memory

• 16 byte for SSE

• 32 byte for AVX

• 64 byte for Intel® MIC Architecture & Intel® AVX-512

112

Alignment
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• Aligned heap memory allocation by intrinsic/library call:

 void* _mm_malloc(int size, int base)

 Linux*, OS X* only:
int posix_memaligned(void **p, size_t base, size_t size)

• #pragma vector [aligned|unaligned]

 Only for Intel Compiler

 Asserts compiler that aligned memory operations can be used for all data 
accesses in loop following directive

 Use with care:
The assertion must be satisfied for all(!) data accesses in the loop!
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Alignment Hints for C/C++ I
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• Align attribute for variable declarations:

 Linux*, OS X*, Windows*: __declspec(align(base)) <var>

 Linux*, OS X*: <var> __attribute__((aligned(base)))

 Portability caveat:
__declspec is not known for GCC and __attribute__ not for Microsoft Visual 
Studio*!

• Hint that start address of an array is aligned (Intel Compiler only):
__assume_aligned(<array>, base)
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Alignment Hints for C/C++ II
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• !DIR$ VECTOR [ALIGNED|UNALIGNED]

 Asserts compiler that aligned memory operations can be used for all data 
accesses in loop following directive

 Use with care:
The assertion must be satisfied for all(!) data accesses in the loop!

• Hint that an entity in memory is aligned:
!DIR$ ASSUME_ALIGNED address1:base [, address2:base] ...

• Align variables:
!DIR$ ATTRIBUTES ALIGN: base :: variable

• Align data items globally:
Linux*, OS X*: -align <a>, Windows*: /align:<a>

 <a> can be array<n>byte with <n> defining the alignment for arrays

 Other values for <a> are also possible, e.g.: [no]commons, [no]records, …

All are Intel® Fortran Compiler only directives and options!
115

Alignment Hints for Fortran
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Compiled both cases using –xAVX:

More efficient if aligned:

118

Alignment Impact: Example

void mult(double* a, double* b, double* c)

{

int i;

#pragma vector aligned

for (i = 0; i < N; i++)

c[i] = a[i] * b[i];

}

..B2.2:

vmovupd (%rdi,%rax,8), %ymm0

vmulpd (%rsi,%rax,8), %ymm0, %ymm1

vmovntpd %ymm1, (%rdx,%rax,8)

addq $4, %rax

cmpq $1000000, %rax

jb ..B2.2

void mult(double* a, double* b, double* c)

{

int i;

#pragma vector unaligned

for (i = 0; i < N; i++)

c[i] = a[i] * b[i];

}

..B2.2:

vmovupd (%rdi,%rax,8), %xmm0

vmovupd (%rsi,%rax,8), %xmm1

vinsertf128 $1, 16(%rsi,%rax,8), %ymm1, %ymm3

vinsertf128 $1, 16(%rdi,%rax,8), %ymm0, %ymm2

vmulpd %ymm3, %ymm2, %ymm4

vmovupd %xmm4, (%rdx,%rax,8)

vextractf128 $1, %ymm4, 16(%rdx,%rax,8)

addq $4, %rax

cmpq $1000000, %rax

jb ..B2.2
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• Loops where compiler does not know the iteration count:

 Upper/lower bound of a loop are not loop-invariant

 Loop stride is not constant

 Early bail-out during iterations (e.g. break, exceptions, etc.)

 Too complex loop body conditions for which no SIMD feature instruction exists

 Loop dependent parameters are globally modifiable during iteration
(language standards require load and test for each iteration)

• Transform is possible, e.g.:
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Unsupported Loop Structure

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

for(int i = 0; i < x->bound; i++)

a[i] = 0;

}

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

int local_ub = x->bound;

for(int i = 0; i < local_ub; i++)

a[i] = 0;

}
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• Non-consecutive memory locations are being accessed in the loop

• Vectorization works best with contiguous memory accesses  

• Vectorization still be possible for non-contiguous memory access, but…

 Data arrangement operations might be too expensive
(e.g. access pattern linear/regular)

 Vectorization report issued when too expensive:
Loop was not vectorized: vectorization possible but seems inefficient

• Examples:
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Non-Unit Stride Access

for(i = 0; i <= MAX; i++) {

for(j = 0; j <= MAX; j++) {

D[i][j] += 1;                  // Unit stride

D[j][i] += 1;                  // Non-unit stride but linear

A[j * j] += 1;                 // Non-unit stride

A[B[j]] += 1;                  // Non-unit stride (scatter)

if(A[MAX - j]) == 1) last = j; // Non-unit stride

}

}
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• Function calls prevent vectorization in general

• Exceptions:

 Call of intrinsic routines such as mathematical functions:
Implementation is known to compiler

 Successful in-lining of called routine:
IPO enables in-lining of routines across source files
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Function Calls/In-lining I

for (i = 1; i < nx; i++) {

x = x0 + i * h;

sumx = sumx + func(x, y, xp, yp);

}

// Defined in different compilation unit!

float func(float x, float y, float xp, float yp)

{

float denom;

denom = (x - xp) * (x - xp) + (y - yp) * (y - yp);

denom = 1. / sqrt(denom);

return denom;

}
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• Success of in-lining can be verified using the optimization report:
Linux*, OS X*: -opt-report=<n> -opt-report-phase=ipo
Windows*: /Qopt-report:<n> /Qopt-report-phase:ipo

• Intel compilers offer a large set of switches, directives and language extensions to 
control in-lining globally or locally, e.g.:

 #pragma [no]inline (C/C++), !DIR$ [NO]iNLINE (Fortran):
Instructs compiler that all calls in the following statement can be in-lined or may never be in-
lined

 #pragma forceinline (C/C++), !DIR$ FORCEINLINE (Fortran):
Instructs compiler to ignore the heuristic for in-lining and to inline all calls in the following 
statement

 See section “Inlining Options” in compiler manual for full list of options

• IPO offers additional advantages to vectorization

 Inter-procedural alignment analysis

 Improved (more precise) dependency analysis
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Function Calls/In-lining II
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• Non-unit stride between elements:
Possible to change algorithm to allow linear/consecutive access?

• Loop body too complex reports: Try splitting up the loops!

• Vectorization seems inefficient reports:
Enforce vectorization, benchmark and verify results!

133

How to Succeed in Vectorization? II
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• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Summary

185

Agenda
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• Intel® C++ Compiler and Intel® Fortran Compiler provide sophisticated and 
flexible support for vectorization

• They also provide a rich set of reporting features that help verifying 
vectorization and optimization in general

• Directives and compiler switches permit fine-tuning for vectorization

• Vectorization can even be enforced for certain cases where language 
standards are too restrictive

• Understanding of concepts like dependency and alignment is required to 
take advantage from SIMD features

• Intel® C++/Fortran Compiler can create multi-version code to address a 
broad range of processor generations, Intel and non-Intel processors and 
individually exploiting their feature set
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Summary
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• Aart Bik: “The Software Vectorization Handbook”
http://www.intel.com/intelpress/sum_vmmx.htm

• Randy Allen, Ken Kennedy: “Optimizing Compilers for
Modern Architectures: A Dependence-based Approach”

• Steven S. Muchnik, “Advanced Compiler Design and
Implementation”

• Intel Software Forums, Knowledge Base, White Papers,
Tools Support (see http://software.intel.com)
Sample Articles:

 http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-
c-compilers/

 http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/

 http://software.intel.com/en-us/articles/performance-tools-for-software-
developers-intel-compiler-options-for-sse-generation-and-processor-specific-
optimizations/
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Optimization Notice
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