
5

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Summary

6

Agenda

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Single Instruction Multiple Data (SIMD):

– Processing vector with a single operation

– Provides data level parallelism (DLP)

– Because of DLP more efficient than scalar processing

• Vector:

– Consists of more than one element

– Elements are of same scalar data types
(e.g. floats, integers, …)

• Vector length (VL): Elements of the vector

7

Vectorization

Scalar
Processing

Vector
Processing

A B

C

+

Ci

+

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

VL

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• SIMD instructions:

 One single machine instruction for vector processing

 Vector lengths are fixed (2, 4, 8, 16)

 Synchronous execution on elements of vector(s)
 Results are available at the same time

 Masking possible to omit operations on selected elements

• SIMD is key for data level parallelism for years:

 64 bit Multi-Media Extension (MMX™)

 128 bit Intel® Streaming SIMD Extensions (Intel® SSE, SSE2, SSE3, SSE4.1, SSE4.2)
and Supplemental Streaming SIMD Extensions (SSSE3)

 256 bit Intel® Advanced Vector Extensions (Intel® AVX)

 512 bit vector instruction set extension of Intel® Many Integrated Core
Architecture (Intel® MIC Architecture) and Intel® Advanced Vector Extensions 512
(Intel® AVX-512)

8

SIMD & Intel® Architecture

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

SSE Vector Types

Intel® SSE

Intel® SSE2

4x single precision FP

2x double precision FP

16x 8 bit integer

8x 16 bit integer

4x 32 bit integer

2x 64 bit integer

plain 128 bit

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Packed SSE instructions operate on all elements per vector

• Most of these instructions have scalar versions operating only on one
element of vector

• Avoid scalar versions and only use packed instructions to exploit SIMD
capabilities!

14

SSE Packed vs. Scalar

Scalar single-precision FP Addition:

addss xmm2, xmm1

single-precision FP data type
scalar execution mode

+

a3 a2 a1 a0

b3 b2 b1 b0

a3 a2 a1 a0+b0

Packed single-precision FP Addition:

addps xmm2, xmm1

single-precision FP data type
packed execution mode

+

a3 a2 a1 a0

b3 b2 b1 b0

a3+b3 a2+b2 a1+b1 a0+b0

xmm1

xmm2

xmm2

xmm1

xmm2

xmm2

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

AVX Vector Types

Intel® AVX

Intel® AVX2

8x single precision FP

32x 8 bit integer

16x 16 bit integer

8x 32 bit integer

4x 64 bit integer

plain 256 bit

4x double precision FP

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• High level language complex types can also be used, compiler cares about
details (halves the potential vector length)

• Use 32 bit integers where possible, avoid 64 bit integers
(short & char types will be converted implicitly, though)

• Masking supported via dedicated registers (K0-7)
 No need for bit vectors or additional compute cycles

26

Intel® MIC Architecture Vector Types

16x single precision FP

16x 32 bit integer

8x double precision FP

F
ir

st

G
e

n
e

ra
ti

o
n

64 bit masks

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

 Combines AVX and Intel® MIC Architecture!

29

Intel® AVX-512 Vector Types
In

te
l®

 A
V

X
-5

1
2

16x single precision FP

32x 16 bit integer

16x 32 bit integer

8x 64 bit integer

8x double precision FP

64x 8 bit integer

plain 512 bit

64 bit masks

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Extended VEX encoding (EVEX) to introduce another prefix

• Extends previous AVX and SSE registers to 512 bit:

 32 bit: 8 ZMM registers (same as YMM/XMM)

 64 bit: 32 ZMM registers (2x of YMM/XMM)

• 8 mask registers (K0 is special)

 No penalty when switching between XMM, YMM and ZMM!

33

Intel® AVX-512 Registers

ZMM0-31

512 bit

K0-7

64 bit

XMM0-15

128 bit

YMM0-15

256 bit3
2

 b
it

6
4

 b
it

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• KNL and future Intel® Xeon® processors
share a large set of instructions

• But some sets are not identical

• Subsets are represented by individual
feature flags (CPUID)

Future Knight
(KNL)

SSE

AVX

AVX2

AVX-512F

Future Intel®
Xeon®

processor

SSE

AVX

AVX2

AVX-512F

SNB

SSE

AVX

HSW

SSE

AVX

AVX2

NHM

SSE

AVX-512CD AVX-512CD

AVX-512ER

AVX-512PR AVX-512BW

AVX-512DQ

AVX-512VL

MPX,SHA, …

C
o

m
m

o
n

 I
n

s
tr

u
c
ti
o

n
 S

e
t

37

Intel® AVX-512 - Comparison

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• OS support is required due to the new (extended) register state

• At least the following OSes are needed to get Intel® AVX:

– Linux* kernel 3.15 or latest

– Microsoft Windows* 8 and later

– OS X*: unknown

Without OS support Intel® AVX-512 cannot be used even though the
underlying processor supports it!

40

Operating Systems & Intel® AVX-512

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Summary

43

Agenda

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Transform sequential code to exploit vector processing capabilities (SIMD)
of Intel processors

 Manually by explicit syntax

 Automatically by tools like a compiler

44

Vectorization of Code

for(i = 0; i <= MAX;i++)

c[i] = a[i] + b[i];

+

a[i]

b[i]

c[i]

+

a[i+7] a[i+6] a[i+5] a[i+4] a[i+3] a[i+2] a[i+1] a[i]

b[i+7] b[i+6] b[i+5] b[i+4] b[i+3] b[i+2] b[i+1] b[i]

c[i+7] c[i+6] c[i+5] c[i+4] c[i+3] c[i+2] c[i+1] c[i]

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• How to express vectorization?

 Fortran and C/C++ have limited ways to express it

 But, Intel compilers use heuristics to vectorize

 There are extensions that allow expression of vectorization explicitly

 There are other, less portable ways…

• Select SIMD type:

 A specific SSE/AVX version also includes all previous versions

 Prefer AVX to SSE if available and possible; AVX also includes SSE

 Avoid mixing SSE and AVX when using intrinsics or direct assembly

 If target platform is not fixed/known Intel compiler can help producing multiple
versions for different SIMD types:
 Runtime processor dispatching

45

Use Vectorization

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
46

Many Ways to Vectorize

Ease of useCompiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler:
OpenMP* 4.0 and Intel® Cilk™ Plus

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Summary

60

Agenda

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
62

Many Ways to Vectorize

Ease of useCompiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler:
OpenMP* 4.0 and Intel® Cilk™ Plus

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
63

Auto-vectorization of Intel Compilers

..B1.2:

vmovupd (%rsp,%rax,8), %ymm0

vmovupd 32(%rsp,%rax,8), %ymm2

vmovupd 64(%rsp,%rax,8), %ymm4

vmovupd 96(%rsp,%rax,8), %ymm6

vaddpd 8032(%rsp,%rax,8), %ymm2, %ymm3

vaddpd 8000(%rsp,%rax,8), %ymm0, %ymm1

vaddpd 8064(%rsp,%rax,8), %ymm4, %ymm5

vaddpd 8096(%rsp,%rax,8), %ymm6, %ymm7

vmovupd %ymm1, 16000(%rsp,%rax,8)

vmovupd %ymm3, 16032(%rsp,%rax,8)

vmovupd %ymm5, 16064(%rsp,%rax,8)

vmovupd %ymm7, 16096(%rsp,%rax,8)

addq $16, %rax

cmpq $992, %rax

jb ..B1.2

...

Intel® AVX
..B1.2:

movaps (%rsp,%rax,8), %xmm0

movaps 16(%rsp,%rax,8), %xmm1

movaps 32(%rsp,%rax,8), %xmm2

movaps 48(%rsp,%rax,8), %xmm3

addpd 8000(%rsp,%rax,8), %xmm0

addpd 8016(%rsp,%rax,8), %xmm1

addpd 8032(%rsp,%rax,8), %xmm2

addpd 8048(%rsp,%rax,8), %xmm3

movaps %xmm0, 16000(%rsp,%rax,8)

movaps %xmm1, 16016(%rsp,%rax,8)

movaps %xmm2, 16032(%rsp,%rax,8)

movaps %xmm3, 16048(%rsp,%rax,8)

addq $8, %rax

cmpq $1000, %rax

jb ..B1.2

...

Intel® SSE4.2

void add(A, B, C)

double A[1000]; double B[1000]; double C[1000];

{

int i;

for (i = 0; i < 1000; i++)

C[i] = A[i] + B[i];

}

subroutine add(A, B, C)

real*8 A(1000), B(1000), C(1000)

do i = 1, 1000

C(i) = A(i) + B(i)

end do

end

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Using vector intrinsic or SIMD intrinsic class inherently provides a
guarantee of using SIMD instructions
However, this is highly platform dependent and complex

• Auto-vectorization mostly works out of the box
However, there are cases auto-vectorization does not work

• Intel® Cilk™ Plus Array Notation Extensions can alleviate both problems
(C/C++ only):

 Deterministically making use of vectorization

 Easy to use with only minimal code changes

• OpenMP* 4.0 also provides extensions for vectorization (C/C++ & Fortran)

66

Vectorization with Language Extensions

double A[1000], B[1000], C[1000], D[1000], E[1000];

for (int i = 0; i < 1000; i++)

E[i] = (A[i] < B[i]) ? C[i] : D[i];

double A[1000], B[1000], C[1000], D[1000], E[1000];

E[:] = (A[:] < B[:]) ? C[:] : D[:];

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Linux*, OS X*: -x<feature>, Windows*: /Qx<feature>

 Might enable Intel processor specific optimizations

 Processor-check added to “main” routine:
Application errors in case SIMD feature missing or non-Intel processor with
appropriate/informative message

• Linux*, OS X*: -ax<features>, Windows*: /Qax<features>

 Multiple code paths: baseline and optimized/processor-specific

 Optimized code paths for Intel processors defined by <features>

 Multiple SIMD features/paths possible, e.g.: -axSSE2,AVX

 Baseline code path defaults to –msse2 (/arch:sse2)

 The baseline code path can be modified by –m<feature> or –x<feature>
(/arch:<feature> or /Qx<feature>)

71

Basic Vectorization Switches I

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Linux*, OS X*: -m<feature>, Windows*: /arch:<feature>

 Neither check nor specific optimizations for Intel processors:
Application optimized for both Intel and non-Intel processors for selected SIMD
feature

 Missing check can cause application to fail in case extension not available

• Default for Linux*: -msse2, Windows*: /arch:sse2:

 Activated implicitly

 Implies the need for a target processor with at least Intel® SSE2

• Default for OS X*: -msse3 (IA-32), -mssse3 (Intel® 64)

• For 32 bit compilation, –mia32 (/arch:ia32) can be used in case target
processor does not support Intel® SSE2 (e.g. Intel® Pentium® 3 or older)

72

Basic Vectorization Switches II

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Special switch for Linux*, OS X*: -xHost, Windows*: /QxHost

 Compiler checks SIMD features of current host processor (where built on) and
makes use of latest SIMD feature available

 Code only executes on processors with same SIMD feature or later as on build
host

 As for -x<feature> or /Qx<feature>, if “main” routine is built with
–xHost or /QxHost the final executable only runs on Intel processors

73

Basic Vectorization Switches III

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• SIMD features can also be set on a function/subroutine level via
pragmas/directives:

 C/C++:
#pragma intel optimization_parameter target_arch=<CPU>

 Fortran:
!DIR$ ATTRIBUTES OPTIMIZATION_PARAMETER:TARGET_ARCH= <CPU>

• Examples:

 C/C++:

 Fortran:

74

Vectorization Pragma/Directive

#pragma intel optimization_parameter target_arch=AVX

void optimized_for_AVX()

{

…

}

function optimized_for_AVX()

!DIR$ ATTRIBUTES OPTIMIZATION_PARAMETER:TARGET_ARCH=AVX

…

end function

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Disable vectorization:

 Globally via switch:
Linux*, OS X*: -no-vec, Windows*: /Qvec-

 For a single loop:
C/C++: #pragma novector, Fortran: !DIR$ NOVECTOR

 Compiler still can use some SIMD features

• Using vectorization:

 Globally via switch (default for optimization level 2 and higher):
Linux*, OS X*: -vec, Windows*: /Qvec

 Enforce for a single loop (override compiler efficiency heuristic) if semantically correct:
C/C++: #pragma vector always, Fortran: !DIR$ VECTOR ALWAYS

 Influence efficiency heuristics threshold:
Linux*, OS X*: -vec-threshold[n]
Windows*: /Qvec-threshold[[:]n]
n: 100 (default; only if profitable) … 0 (always)

79

Control Vectorization I

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Verify vectorization:

 Globally:
Linux*, OS X*: -opt-repot, Windows*: /Qopt-report

 Abort compilation if loop cannot be vectorized:
C/C++: #pragma vector always assert
Fortran: !DIR$ VECTOR ALWAYS ASSERT

• Advanced:

 Ignore vector dependencies (IVDEP):
C/C++: #pragma ivdep
Fortran: !DIR$ IVDEP

 “Enforce” vectorization:
C/C++: #pragma simd or #pragma omp simd

Fortran: !DIR$ SIMD or !$OMP SIMD

When used, vectorization can only be turned off with:
Linux*, OS X*: -no-vec –no-simd –qno-openmp-simd

Windows*: /Qvec- /Qsimd- /Qopenmp-simd-

80

Control Vectorization II

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Summary

82

Agenda

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Assembler code inspection (Linux*, OS X*: -S, Windows*: /Fa):

 Most reliable way and gives all details of course

 Check for scalar/packed or (E)VEX encoded instructions:
Assembler listing contains source line numbers for easier navigation

• Using Intel® VTune™ Amplifier:

 Different events can be selected to measure use of vector units, e.g.
FP_COMP_OPS_EXE.SSE_PACKED_[SINGLE|DOUBLE]

 For Intel® MIC Architecture: Use metric Vectorization Intensity

• Difference method:

1. Compile and benchmark with -no-vec –no-simd –qno-openmp-simd or / Qvec-
/Qsimd- /Qopenmp-simd-, or on a loop by loop basis via
#pragma novector or !DIR$ NOVECTOR

2. Compile and benchmark with selected SIMD feature

3. Compare runtime differences

83

Validating Vectorization Success I

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Optimization report:

 Linux*, OS X*: -opt-report=<n>, Windows*: /Qopt-report:<n>
n: 0, …, 5 specifies level of detail; 2 is default (more later)

 Prints optimization report with vectorization analysis

 Also known as vectorization report for Intel® C++/Fortran Compiler before 15.0:
Linux*, OS X*: -vec-report=<n>, Windows*: /Qvec-report:<n>
Deprecated, don’t use anymore – use optimization report instead!

• Optimization report phase:

 Linux*, OS X*: -opt-report-phase=<p>,
Windows*: /Qopt-report-phase:<p>

 <p> is all by default; use vec for just the vectorization report

• Optimization report file:

 Linux*, OS X*: -opt-report-file=<f>, Windows*: /Qopt-report-file:<f>

 <f> can be stderr, stdout or a file (default: *.optrpt)
85

Validating Vectorization Success II

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Example novec.f90:

86

Optimization Report Example

1: subroutine fd(y)

2: integer :: i

3: real, dimension(10), intent(inout) :: y

4: do i=2,10

5: y(i) = y(i-1) + 1

6: end do

7: end subroutine fd

$ ifort novec.f90 –opt-report=5

ifort: remark #10397: optimization reports are generated in *.optrpt

files in the output location

$ cat novec.optrpt

…

LOOP BEGIN at novec.f90(4,5)

remark #15344: loop was not vectorized: vector dependence prevents

vectorization

remark #15346: vector dependence: assumed FLOW dependence between y

line 5 and y line 5

remark #25436: completely unrolled by 9

LOOP END

…

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• See which levels are available for each phase:

 Linux*, OS X*: -qopt-report-help,
Windows*: /Qopt-report-help

• Select format:

 Linux*, OS X*: -qopt-report-format=[text|vs],
Windows*: /Qopt-report-format:[text|vs]

 text as textual and vs for Microsoft Visual Studio* IDE integration output

87

Optimization Report – Advanced I

$ icpc –qopt-report-help

…

vec: Vector optimizations

Level 1: Report the loops that were vectorized.

Level 2: Level 1 + report the loops that were not vectorized,

along with reason preventing vectorization.

Level 3: Level 2 + loop vectorization summary.

Level 4: Level 3 + report verbose details for reasons loop

was/wasn't vectorized.

Level 5: Level 4 + report information about variable/memory

dependencies preventing vectorization.

…

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Summary

93

Agenda

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Most frequent reasons:

• Data dependence

• Alignment

• Unsupported loop structure

• Non-unit stride access

• Function calls/in-lining

• Non-vectorizable Mathematical functions

• Data types

• Control depencence

• Bit masking

All those are common and will be explained in detail next!

94

Reasons for Vectorization Fails I

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Other reasons:

• Outer loop of loop nesting cannot be vectorized

• Loop body too complex (register pressure)

• Vectorization seems inefficient (low trip count)

• Many more

Those are less likely and are not described in the following!

95

Reasons for Vectorization Fails II

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

96

Factors that prevent Vectorizing your code

1. Loop-carried dependencies

for (i = 1; i < nx; i++) {

x = x0 + i * h;

sumx = sumx + func(x, y, xp);

}

2. Function calls (incl. indirect)

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

for(int i = 0; i < x->bound; i++)

a[i] = 0;

}

3. Loop structure, boundary condition

4 Outer vs. inner loops

1.A Pointer aliasing (compiler-specific)

for(i = 0; i <= MAX; i++) {

for(j = 0; j <= MAX; j++) {

D[j][i] += 1;

}

}

void scale(int *a, int *b)

{

for (int i = 0; i < 1000; i++)

b[i] = z * a[i];

}

DO I = 1, N

A(I + M) = A(I) + B(I)

ENDDO

And others……

5. Cost-benefit (compiler specific..)

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

97

Factors that slow-down your Vectorized code

for (i = 1; i < nx; i++) {

sumx = sumx +

serialized_func_call(x,

y, xp);

}

2. Serialized or “sub-optimal” function calls

void doit(int *a, int *b, int

unknown_small_value)

{

for(int i = 0; i <

unknown_small_value; i++)

a[i] = z*b[i];

}

3. Small trip counts not multiple of VL

4. Branchy codes, outer vs. inner loops

1.B Memory sub-system Latency / Throughput

for(i = 0; i <= MAX; i++) {

if (D[i] < N)

do_this(D);

else if (D[i] > M)

do_that();

//…

}

void scale(int *a, int *b)

{

for (int i = 0; i < VERY_BIG; i++)

c[i] = z * a[i][j];

b[i] = z * a[i];

}

5. MANY others: spill/fill, fp accuracy trade-offs,
FMA, DIV/SQRT, Unrolling, even AVX throttling..

1.A. Indirect memory access

for (i=0; i<N; i++)

A[B[i]] = C[i]*D[i]

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Definition of data dependence:

There is a data dependence from statement S1 to statement S2

(written as S1  S2) if and only if:

• There is a potential execution flow from S1 to S2

• S1 and S2 reference a common memory location S1 or S2 write to

Note: S1 and S2 can be the very same statement

Data dependence classification:

• S1 
F S2: S1 writes, S2 reads: Flow Dependence

• S1 
A S2: S1 reads, S2 writes: Anti Dependence

• S1 
O S2: S1 writes, S2 writes: Output Dependence

99

Data Dependence

S1 X = …

S2 … = X

S1 … = X

S2 X = …

S1 X = …

S2 X = …

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Dependencies in loops become more obvious by virtually unrolling the loop:

In case the dependency requires execution of any previous loop iteration, we

call it loop-carried dependence. Otherwise, loop-independent dependence.

E.g.:

S1 
F S2: Loop-independent dependence

S2 
F S2: Loop-carried dependence

100

Data Dependence in Loops

S1 A(2) = A(1) + B(1)

S1 A(3) = A(2) + B(2)

S1 A(4) = A(3) + B(3)

S1 A(5) = A(4) + B(4)

...

DO I = 1, N

S1 A(I+1) = A(I) + B(I)

ENDDO

S1 
F S1

DO I = 1, 10000

S1 A(I) = B(I) * 17

S2 X(I+1) = X(I) + A(I)

ENDDO

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Disambiguating memory locations of pointers in C99:
Linux*, OS X*: –std=c99, Windows*: /Qstd=c99

• Intel® C++ Compiler also allows this for other modes
(e.g. -std=c89, -std=c++0x, …), too - not standardized, though:
Linux*, OS X*: -restrict, Windows*: /Qrestrict

• Declaring pointers with keyword restrict asserts compiler that they only
reference individually assigned, non-overlapping memory areas

• Also true for any result of pointer arithmetic (e.g. ptr + 1 or ptr[1])

Examples:

105

Disambiguation Hints I

void scale(int *a, int *restrict b)

{

for (int i = 0; i < 10000; i++) b[i] = z * a[i];

}

void mult(int a[][NUM], int b[restrict][NUM])

{ ... }

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Directives:

• #pragma ivdep (C/C++) or !DIR$ IVDEP (Fortran)

• #pragma simd (C/C++) or !DIR$ SIMD (Fortran)

For C/C++:

• Assume no aliasing at all (dangerous!):
Linux*, OS X*: -fno-alias, Windows*: /Oa

• Assume ISO C Standard aliasing rules:
Linux*, OS X*: -ansi-alias, Windows*: /Qansi-alias
Default with 15.0 and later but not with earlier versions!

• Turns on ANSI aliasing checker, too (thus recommended)

• No aliasing between function arguments:
Linux*, OS X*: -fargument-noalias, Windows*: /Qalias-args-

• No aliasing between function arguments and global storage:
Linux*, OS X*: -fargument-noalias-global, Windows*: N/A

106

Disambiguation Hints II

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

For Fortran:

• Assume no aliasing at all:
Linux*, OS X*: -fno-alias, Windows*: /Oa

• Assume Fortran Standard aliasing rules:
Linux*, OS X*: -ansi-alias, Windows*: /Qansi-alias
Opposed to C/C++ this is default since ever!

• No aliasing of Cray* pointers:
Linux*, OS X*: -safe-cray-ptr, Windows*: /Qsafe-cray-ptr

107

Disambiguation Hints III

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Optimization usually takes place individually for each procedure

• Dependency analysis of inter-procedural optimization (IPO) works across
all procedures and thus allows global optimization

• Switch to turn on IPO for single file (one compilation unit)

 Linux*, OS X*: -ip

 Windows*: /Qip
Subset already default for optimization levels 2 and higher

• Switch to turn on IPO for all compilation units

 Linux*, OS X*: -ipo

 Windows*: /Qipo

• Example:
References of function arguments can be analyzed even if located in other
compilation unit.

110

Inter-Procedural Dependency Analysis

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Caveat with using unaligned memory access:

• Unaligned loads and stores can be very slow due to higher I/O because
two cache-lines need to be loaded/stored (not always, though)

• Compiler can mitigate expensive unaligned memory operations by using
two partial loads/stores – still slow
(e.g. two 64 bit loads instead of one 128 bit unaligned load)

• The compiler can use “versioning” in case alignment is unclear:
Run time checks for alignment to use fast aligned operations if possible,
the slower operations otherwise – better but limited

Best performance: User defined aligned memory

• 16 byte for SSE

• 32 byte for AVX

• 64 byte for Intel® MIC Architecture & Intel® AVX-512

112

Alignment

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Aligned heap memory allocation by intrinsic/library call:

 void* _mm_malloc(int size, int base)

 Linux*, OS X* only:
int posix_memaligned(void **p, size_t base, size_t size)

• #pragma vector [aligned|unaligned]

 Only for Intel Compiler

 Asserts compiler that aligned memory operations can be used for all data
accesses in loop following directive

 Use with care:
The assertion must be satisfied for all(!) data accesses in the loop!

113

Alignment Hints for C/C++ I

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Align attribute for variable declarations:

 Linux*, OS X*, Windows*: __declspec(align(base)) <var>

 Linux*, OS X*: <var> __attribute__((aligned(base)))

 Portability caveat:
__declspec is not known for GCC and __attribute__ not for Microsoft Visual
Studio*!

• Hint that start address of an array is aligned (Intel Compiler only):
__assume_aligned(<array>, base)

114

Alignment Hints for C/C++ II

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• !DIR$ VECTOR [ALIGNED|UNALIGNED]

 Asserts compiler that aligned memory operations can be used for all data
accesses in loop following directive

 Use with care:
The assertion must be satisfied for all(!) data accesses in the loop!

• Hint that an entity in memory is aligned:
!DIR$ ASSUME_ALIGNED address1:base [, address2:base] ...

• Align variables:
!DIR$ ATTRIBUTES ALIGN: base :: variable

• Align data items globally:
Linux*, OS X*: -align <a>, Windows*: /align:<a>

 <a> can be array<n>byte with <n> defining the alignment for arrays

 Other values for <a> are also possible, e.g.: [no]commons, [no]records, …

All are Intel® Fortran Compiler only directives and options!
115

Alignment Hints for Fortran

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Compiled both cases using –xAVX:

More efficient if aligned:

118

Alignment Impact: Example

void mult(double* a, double* b, double* c)

{

int i;

#pragma vector aligned

for (i = 0; i < N; i++)

c[i] = a[i] * b[i];

}

..B2.2:

vmovupd (%rdi,%rax,8), %ymm0

vmulpd (%rsi,%rax,8), %ymm0, %ymm1

vmovntpd %ymm1, (%rdx,%rax,8)

addq $4, %rax

cmpq $1000000, %rax

jb ..B2.2

void mult(double* a, double* b, double* c)

{

int i;

#pragma vector unaligned

for (i = 0; i < N; i++)

c[i] = a[i] * b[i];

}

..B2.2:

vmovupd (%rdi,%rax,8), %xmm0

vmovupd (%rsi,%rax,8), %xmm1

vinsertf128 $1, 16(%rsi,%rax,8), %ymm1, %ymm3

vinsertf128 $1, 16(%rdi,%rax,8), %ymm0, %ymm2

vmulpd %ymm3, %ymm2, %ymm4

vmovupd %xmm4, (%rdx,%rax,8)

vextractf128 $1, %ymm4, 16(%rdx,%rax,8)

addq $4, %rax

cmpq $1000000, %rax

jb ..B2.2

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Loops where compiler does not know the iteration count:

 Upper/lower bound of a loop are not loop-invariant

 Loop stride is not constant

 Early bail-out during iterations (e.g. break, exceptions, etc.)

 Too complex loop body conditions for which no SIMD feature instruction exists

 Loop dependent parameters are globally modifiable during iteration
(language standards require load and test for each iteration)

• Transform is possible, e.g.:

120

Unsupported Loop Structure

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

for(int i = 0; i < x->bound; i++)

a[i] = 0;

}

struct _x { int d; int bound; };

void doit(int *a, struct _x *x)

{

int local_ub = x->bound;

for(int i = 0; i < local_ub; i++)

a[i] = 0;

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Non-consecutive memory locations are being accessed in the loop

• Vectorization works best with contiguous memory accesses

• Vectorization still be possible for non-contiguous memory access, but…

 Data arrangement operations might be too expensive
(e.g. access pattern linear/regular)

 Vectorization report issued when too expensive:
Loop was not vectorized: vectorization possible but seems inefficient

• Examples:

121

Non-Unit Stride Access

for(i = 0; i <= MAX; i++) {

for(j = 0; j <= MAX; j++) {

D[i][j] += 1; // Unit stride

D[j][i] += 1; // Non-unit stride but linear

A[j * j] += 1; // Non-unit stride

A[B[j]] += 1; // Non-unit stride (scatter)

if(A[MAX - j]) == 1) last = j; // Non-unit stride

}

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Function calls prevent vectorization in general

• Exceptions:

 Call of intrinsic routines such as mathematical functions:
Implementation is known to compiler

 Successful in-lining of called routine:
IPO enables in-lining of routines across source files

123

Function Calls/In-lining I

for (i = 1; i < nx; i++) {

x = x0 + i * h;

sumx = sumx + func(x, y, xp, yp);

}

// Defined in different compilation unit!

float func(float x, float y, float xp, float yp)

{

float denom;

denom = (x - xp) * (x - xp) + (y - yp) * (y - yp);

denom = 1. / sqrt(denom);

return denom;

}

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Success of in-lining can be verified using the optimization report:
Linux*, OS X*: -opt-report=<n> -opt-report-phase=ipo
Windows*: /Qopt-report:<n> /Qopt-report-phase:ipo

• Intel compilers offer a large set of switches, directives and language extensions to
control in-lining globally or locally, e.g.:

 #pragma [no]inline (C/C++), !DIR$ [NO]iNLINE (Fortran):
Instructs compiler that all calls in the following statement can be in-lined or may never be in-
lined

 #pragma forceinline (C/C++), !DIR$ FORCEINLINE (Fortran):
Instructs compiler to ignore the heuristic for in-lining and to inline all calls in the following
statement

 See section “Inlining Options” in compiler manual for full list of options

• IPO offers additional advantages to vectorization

 Inter-procedural alignment analysis

 Improved (more precise) dependency analysis

124

Function Calls/In-lining II

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Non-unit stride between elements:
Possible to change algorithm to allow linear/consecutive access?

• Loop body too complex reports: Try splitting up the loops!

• Vectorization seems inefficient reports:
Enforce vectorization, benchmark and verify results!

133

How to Succeed in Vectorization? II

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Vector Code Generation

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Summary

185

Agenda

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Intel® C++ Compiler and Intel® Fortran Compiler provide sophisticated and
flexible support for vectorization

• They also provide a rich set of reporting features that help verifying
vectorization and optimization in general

• Directives and compiler switches permit fine-tuning for vectorization

• Vectorization can even be enforced for certain cases where language
standards are too restrictive

• Understanding of concepts like dependency and alignment is required to
take advantage from SIMD features

• Intel® C++/Fortran Compiler can create multi-version code to address a
broad range of processor generations, Intel and non-Intel processors and
individually exploiting their feature set

186

Summary

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

• Aart Bik: “The Software Vectorization Handbook”
http://www.intel.com/intelpress/sum_vmmx.htm

• Randy Allen, Ken Kennedy: “Optimizing Compilers for
Modern Architectures: A Dependence-based Approach”

• Steven S. Muchnik, “Advanced Compiler Design and
Implementation”

• Intel Software Forums, Knowledge Base, White Papers,
Tools Support (see http://software.intel.com)
Sample Articles:

 http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-
c-compilers/

 http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/

 http://software.intel.com/en-us/articles/performance-tools-for-software-
developers-intel-compiler-options-for-sse-generation-and-processor-specific-
optimizations/

187

References

http://www.intel.com/intelpress/sum_vmmx.htm
http://software.intel.com/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/

188

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

201

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

