
AUTOMATIC MIXED PRECISION & TENSORRT

2

MIXED PRECISION?

3

FP32
Higher Precision

Range: +/- 3.402823x1038

TENSOR CORES BUILT FOR AI AND HPC
Mixed Precision Accelerator – Delivering Up To 5X Throughput of FP321

4x4 Product and Accumulate

FP32 = FP16 x FP16 + FP32

FP16
Reduced Precision

Lower Latency
Range: +/- 65,504

4x4 Matrix
16 FP16 values

4x4 Matrix
16 FP16 values

5X Throughput of FP321

D=A*B+C

1Fastest Tensor Core Speedup by Facebook on NMT (Arxiv paper Sep 2018)

https://arxiv.org/pdf/1806.00187.pdf

Memory Savings

• Half Storage Requirements (larger
batch size)

• Half the memory traffic by reducing
size of gradient/activation tensors

14

Matching Accuracy for FP32 and Mixed Precision

Values are measured with model running on (1) DGX-1V 8GPU 16G, (2) DGX-1V 8GPU 32G or (3) DGX-2V 16GPU 32G

Model Script Framework Data Set Automatic or
Manual
Mixed-Precision

FP32

Accuracy

Mixed-Precisi
on Accuracy

FP32

Throughput

Mixed-Precision
Throughput

Speedup

BERT Q&A
(2) TensorFlow SQuaD AMP 90.83

Top 1

90.99

Top 1

66.65

sentences/sec

129.16

sentences/sec

1.94

SSD w/RN50
(1) TensorFlow COCO 2017 AMP 0.268

mAP

0.269

mAP

569

images/sec

752

images/sec

1.32

GNMT
(3) PyTorch WMT16

English to

German

Manual 24.16

BLEU

24.22

BLEU

314,831

tokens/sec

738,521

tokens/sec

2.35

Neural
Collaborative
Filter
(1)

PyTorch MovieLens

20M

Manual 0.959

HR

0.960

HR

55,004,590

samples/sec

99,332,230

items/sec

1.81

U-Net
Industrial
(1)

TensorFlow DAGM 2007 AMP 0.965-0.988 0.960-0.988 445

images/sec

491

images/sec

1.10

ResNet-50 v1.5
(1) MXNet ImageNet Manual 76.67

Top 1%

76.49

Top 1%

2,957

images/sec

10,263

images/sec

3.47

Tacotron 2 /
WaveGlow 1.0
(1)

PyTorch LJ Speech

Dataset

AMP 0.3629/

-6.1087

0.3645/

-6.0258

10,843 tok/s

257,687 smp/s

12,742 tok/s

500,375 smp/s

1.18/

1.94

33

ENABLING AUTOMATIC MIXED PRECISION
Add Just A Few Lines of Code, Get Upto 3X Speedup

More details: https://developer.nvidia.com/automatic-mixed-precision

TensorFlow

NVIDIA Container 19.07+, TF 1.14+ and TF 2+, explicit optimizer wrapper available:

opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)

os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1'
OR

export TF_ENABLE_AUTO_MIXED_PRECISION=1

PyTorch

APEX

model, optimizer = amp.initialize(model, optimizer, opt_level="O1")

with amp.scale_loss(loss, optimizer) as scaled_loss:

scaled_loss.backward()

MXNet

amp.init()

amp.init_trainer(trainer)

with amp.scale_loss(loss, trainer) as scaled_loss:

autograd.backward(scaled_loss)

MIXED PRECISION
What is the benefit?

Using mixed precision and Volta your networks can be:

1. 3-4x faster

2. Reduce memory consumption and bandwidth pressure

3. just as powerful

with no architecture change.

A MIXED PRECISION SOLUTION

"Master" weights in FP32

Loss (Gradient) Scaling

Accumulate to FP32 (Tensor Cores)

Imprecise weight updates

Gradients underflow

Maintain precision

MIXED PRECISION TRAINING

FP32 Master
Weights

Forward Pass

FP32
Loss

Loss Scaling

Scaled FP32
Loss

Scaled
FP32

Gradients
FP32 Gradients

Scaled
FP16

Gradients

FP16
Weights

Remove scale,
(+clip, etc.)Apply

Copy

9

WHY TENSORRT?

10

AI INFERENCE NEEDS TO RUN EVERYWHERE

Training InferenceDNN Model

11

NVIDIA TensorRT
From Every Framework, Optimized For Each Target Platform

TESLA V100

DRIVE AGX

TESLA T4

JETSON Xavier

NVIDIA DLA

TensorRTTensorRT

5

CHALLENGES WITH CURRENT APPROACHES
Requirement Challenges

High Throughput
Unable to processing high-volume, high-velocity data
 Impact: Increased cost ($, time) per inference

Low Response Time

Applications don’t deliver real-time results
 Impact: Negatively affects user experience (voice recognition,

personalized recommendations, real-time object detection)

Power and Memory
Efficiency

Inefficient applications
 Impact: Increased cost (running and cooling), makes deployment

infeasible

Deployment-Grade
Solution

Research frameworks not designed for production
 Impact: Framework overhead and dependencies increases time

to solution and affects productivity

13

ANNOUNCING TensorRT 7
ASR, NLU & TTS | 1000+ Kernels | FP32, FP16, INT8

20+ ONNX Ops & Dynamic Shapes
Enhancements Accelerating Speech

https://github.com/Get Started with ASR, NLU, TTS
Today

ASR With Jasper Example

NLU With BERT Example

TTS With Tacotron 2+Waveglow Blog & Example

Compiler Supports RNNs,
Transformers and CNNs

ht

xt

14

TensorRT INTEGRATED WITH
TENSORFLOW

Speed up TensorFlow model inference with
TensorRT with new TensorFlow APIs

Simple API to use TensorRT within TensorFlow easily

Sub-graph optimization with fallback offers flexibility of
TensorFlow and optimizations of TensorRT

Optimizations for FP32, FP16 and INT8 with use of
Tensor Cores automatically

Speed Up TensorFlow Inference With
TensorRT Optimizations

Set Precision

conversion_params = trt.DEFAULT_TRT_CONVERSION_PARAMS._replace(

precision_mode=trt.TrtPrecisionMode.INT8)

Convert to TF-TRT Graph

converter = trt.TrtGraphConverterV2(

input_saved_model_dir=input_saved_model_dir,

conversion_params=conversion_params)

INT8 Calibration

converter.convert(calibration_input_fn=my_calibration_fn)

Run Inference

converter.save(output_saved_model_dir)

Available in TensorFlow 2.0 and 1.15
https://github.com/tensorflow/tensorflow

Saved
Model

Load
Model

Predict
Convert

to TF-TRT

TensorFlow-TensorRT Inference Workflow

developer.nvidia.com/tensorrt

15

TensorRT ONNX PARSER

Optimize and deploy models from ONNX-
supported frameworks to production

Apply TensorRT optimizations to any ONNX framework
(Caffe 2, Microsoft Cognitive Toolkit, MxNet & PyTorch)

Import TensorFlow and Keras through converters
(tf2onnx, keras2onnx)

Use with C++ and Python apps

20+ New Ops in TensorRT 7

Support for Opset 11 (See List of Supported Ops)

High-Performance Inference for ONNX Models

developer.nvidia.com/tensorrt

TensorRT Optimization

Graph Runtime

Pointwise

Fusion

Time

Fusion

Kernel

Gen

Mixed

Precision

Horizontal

Fusion

Vertical

Fusion

TRANSFORMERS RNNsCNNs

Deploy highly-optimized
Conversational AI apps in
production environments

New API to define loops found in RNNs

Compiler fuses pointwise ops, generates optimized kernels,

and fuses ops across time steps

Run ASR, NLU and TTS within 300 ms, a requirement for real

time apps, 10x perf vs CPU

Models Supported: BERT, MT-DNN, RoBERTa, Tacotron 2,

WaveRNN, DeepASR, GNMT, LSTM Peephole, LSTM

Autoencoder

7

14 ms

6.83 ms

0

5

10

15

20

25

30

35

40
5700

0

1,000

2,000

3,000

4,000

5,000

6,000

140

CPU-Only

6.67 ms

305

V100 +
TensorFlow

V100 + TensorRT

L
a
te

n
cy

(m
s)Im

a
g
e
s/

se
c

Inference throughput (images/sec) on ResNet50. V100 + TensorRT: NVIDIA TensorRT (FP16), batch size 39, Tesla V100-SXM2-
16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On V100 + TensorFlow: Preview of volta optimized TensorFlow (FP16),
batch size 2, Tesla V100-PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. CPU-Only: Intel Xeon-D 1587
Broadwell-E CPU and Intel DL SDK. Score doubled to comprehend Intel's stated claim of 2x performance improvement on Skylake
with AVX512.

4

550

280 ms

153 ms

117 ms

500

450

400

350

300

250

200

150

100

50

00

100

200

300

400

500

600

CPU-Only + Torch

25

V100 + Torch V100 + TensorRT

L
a
te

n
cy

(m
s)Im

a
g
e
s/

se
c

Inference throughput (sentences/sec) on OpenNMT 692M. V100 + TensorRT: NVIDIA TensorRT (FP32), batch size 64, Tesla V100-
PCIE-16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. V100 + Torch: Torch (FP32), batch size 4, Tesla V100-PCIE-
16GB, E5-2690 v4@2.60GHz 3.5GHz Turbo (Broadwell) HT On. CPU-Only: Torch (FP32), batch size 1, Intel E5-2690 v4@2.60GHz
3.5GHz Turbo (Broadwell) HT On

TENSORRT PERFORMANCE

developer.nvidia.com/tensorrt

40x Faster CNNs on V100 vs. CPU-Only
Under 7ms Latency (ResNet50)

140x Faster Language Translation RNNs on
V100 vs. CPU-Only Inference (OpenNMT)

11

TENSORRT OPTIMIZATIONS

KernelAuto-Tuning

Layer & Tensor Fusion

Dynamic Tensor
Memory

Weights & Activation
Precision Calibration

 Optimizations are completely automatic
 Performed with a single function call

12

Un-Optimized Network

concat

max pool

input

next input

3x3 conv.
bias

relu
bias

1x1 conv. 1x1 conv.

relu
bias

1x1 conv.

relu
bias

concat

1x1 conv.

relu
bias

5x5 conv.

relu relu
bias

LAYER & TENSOR FUSION

max pool

input

3x3 CBR 5x5 CBR 1x1 CBR

1x1 CBR

TensorRT Optimized Network

next input

13

Un-Optimized Network
next input

concat

relu relu relu relu

bias bias bias bias 1x1
conv. 3x3 conv. 5x5 conv. 1x1 conv.

relu relu
bias bias max pool 1x1

conv. 1x1 conv.

input

concat

LAYER & TENSOR FUSION

max pool

input

3x3 CBR 5x5 CBR 1x1 CBR

1x1 CBR

TensorRT Optimized Network

next input

• Vertical Fusion
• Horizonal Fusion
• Layer Elimination

Network Layers
before

Layers
after

VGG19 43 27

Inception
V3

309 113

ResNet-152 670 159

14

FP16, INT8 PRECISION
CALIBRATION

Precision Dynamic Range

FP32
38 38

-3.4x10 ~ +3.4x10

FP16 -65504 ~ +65504

INT8 -128 ~ +127

Precision calibration for INT8 inference:
 Minimizes information loss between FP32 and

INT8 inference on a calibration dataset
 Completely automatic

Training precision

No calibration required

Requires calibration

0

1,000

2,000

4,000

3,000

5,000

6,000

Im
a
g
e
s/

Se
c
o
n
d

Reduced Precision Inference Performance
(ResNet50)

V100

FP32
FP32

INT8

FP32

FP16
Tensor Core

P4CPU-Only

15

FP16, INT8 PRECISION
CALIBRATION

Precision calibration for INT8 inference:
 Minimizes information loss between FP32 and

INT8 inference on a calibration dataset
 Completely automatic

Precision Dynamic Range
38 38

FP32 -3.4x10 ~ +3.4x10 Training precision

FP16 -65504 ~ +65504 No calibration required

INT8 -128 ~ +127 Requires calibration

0

1,000

2,000

4,000

3,000

5,000

6,000

Im
a
g
e
s/

Se
c
o
n
d

Reduced Precision Inference Performance
(ResNet50)

V100

FP32
FP32

INT8

FP32

FP16
Tensor Core

P4CPU-Only

FP32
Top 1

INT8
Top 1 Difference

Googlenet 68.87% 68.49% 0.38%

VGG 68.56% 68.45% 0.11%

Resnet-50 73.11% 72.54% 0.57%

Resnet-152 75.18% 74.56% 0.61%

16

KERNEL AUTO-TUNING
DYNAMIC TENSOR MEMORY

Kernel Auto-Tuning Dynamic Tensor Memory

Tesla V100 Jetson TX2

Multiple parameters:
• Batch size
• Input dimensions
• Filter dimensions
...

• Reduces memory footprint and
improves memory re-use

• Manages memory allocation for
each tensor only for the
duration of its usage

Drive PX2

• 100’s of custom built kernel tuning
based on target GPU Architecture.

24

WHY TENSORRT
INFERENCE SERVER?

25

INEFFICIENCY LIMITS INNOVATION
Difficulties with Deploying Data Center Inference

Single Framework OnlySingle Model Only Custom Development

Some systems are overused while
others are underutilized

Solutions can only support
models from one framework

Developers need to reinvent the
plumbing for every application

ASR NLP
Rec-

ommender

!

26

NVIDIA TENSORRT INFERENCE SERVER
Production Data Center Inference Server

Maximize real-time inference
performance of GPUs

Quickly deploy and manage multiple
models per GPU per node

Easily scale to heterogeneous GPUs
and multi GPU nodes

Integrates with orchestration
systems and auto scalers via latency
and health metrics

Now open source for thorough
customization and integration

T
e
n
s
o
rR

T

In
fe

re
n
c
e

S
e
rv

e
r

NVIDIA

T4

NVIDIA

T4

T
e
n
s
o
rR

T

In
fe

re
n
c
e

S
e
rv

e
r

Tesla

V100

Tesla

V100

T
e
n
s
o
rR

T

In
fe

re
n
c
e

S
e
rv

e
r DGX

DGX

27

INFERENCE SERVER ARCHITECTURE

Models supported
● TensorFlow GraphDef/SavedModel
● TensorFlow and TensorRT GraphDef
● TensorRT Plans
● Caffe2 NetDef (ONNX import)
● ONNX graph
● PyTorch JIT (.pb)

Multi-GPU support

Concurrent model execution

Server HTTP REST API/gRPC

Python/C++ client libraries

Python/C++ Client Library

Available with Monthly Updates

28

TENSORRT INFERENCE SERVER OVERVIEW

1. Client serializes the inference request into a message and sends it to the server (Client Send)

2. Message travels over the network from the client to the server (Network)

3. Message arrives at server, and is deserialized (Server Receive)

4. Request is placed on the queue (Server Queue)

5. Request is removed from the queue and computed (Server Compute)

6. Completed request is serialized in a message and sent back to the client (Server Send)

7. Completed message travels over network from the server to the client (Network)

8. Completed message is deserialized by the client and processed as a completed inference request
(Client Receive)

A typical TensorRT Inference Server pipeline can be broken down into the following
8 steps:

29

● One model per GPU
● Requests are steady across all models
● Utilization is low on all GPUs

● Spike in requests for blue model
● GPUs running blue model are being fully utilized
● Other GPUs remain underutilized

Before TensorRT Inference Server - 5,000 FPSBefore TensorRT Inference Server - 800 FPS

TENSORRT INFERENCE SERVER
METRICS FOR AUTOSCALING

30

● Load multiple models on every GPU
● Load is evenly distributed between all GPUs

● Spike in requests for blue model
● Each GPU can run the blue model concurrently
● Metrics to indicate time to scale up

○ GPU utilization
○ Power usage
○ Inference count
○ Queue time
○ Number of requests/sec

After TensorRT Inference Server - 15,000 FPSAfter TensorRT Inference Server - 5,000 FPS

TENSORRT INFERENCE SERVER
METRICS FOR AUTOSCALING

