MPI Collective Communication

Sandeep Agrawal
C-DAC, Pune

Point To Point Communication

Simplest form of message communication

Message is sent from a sending process to a receiving
process only these two process need to know anything about

the message.

- Q/ ® Sameer \. @ _

Collective Communication

Collective communication must involve all processes in the
scope of a communicator.

Collective Participation in solving the problem.

Hi
Hi

Q/ " @ \. 9

Characteristics

MPI collective communication routines differ in many ways from MPI

point-to-point communication routines

Involves coordinated communication within a group of
processes identified by an MPI communicator.

Substitute for a more complex sequence of point-to-point calls.
All routines block until they are locally complete.

In some cases, a root process originates or receives all data.
Amount of data sent must exactly match amount of data
specified by receiver.

No message tags are needed.

Communicators and Groups

MPI uses objects called communicators and groups to define
which collection of processes may communicate with each
other. Most MPI routines require you to specify a communicator

as an argument.

MPFI (COMDMNM WORLD

Collective Communication

Collective communication must involve all processes in the
scope of a communicator. All processes are by default,
members in the communicator MPI._COMM_WORLD

It is the programmer's responsibility to ensure that all
processes within a communicator participate in any collective

operations.

Types of Collective Operations

Synchronization Processes wait until all members of the group

have reached the synchronization point.
Data Movement broadcast, scatter/gather, all to all.
Collective Computation (reductions) - one member of the group

collects data from the other members and performs an

operation (min, max, add, multiply, etc.) on that data.

Collective Communication Routines

Barrier

Creates a barrier synchronization in a group.
Each task, when reaching the MPI_Barrier call, blocks until all

tasks in the group reach the same MPI_Barrier call.

Barrier

P ? MPI_Barrier (comm) - C Program
E ? Barrier MPI_BARRIER (comm,ierr) - Fortran Program

(B3

Data Movement

MPI provides three types of collective data movement routines

Broadcast
Gather

Scatter

Broadcast

Broadcasts (sends) a message from the process with rank

"root" to all other processes in the group.

Broadcast

Sends data stored in buffer buf of process source to all the

other processes in the group comm.

@ Processors Mm.mry?)N @ Processors Memyy)
o [a] [|] o [4 |
|| 1 | jj=mlal | [] [|
| | | L ijal |] | |
p3 | ' p2 | A 1:
. J .)

Broadcast

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype, int
source, MPI_Comm comm) - C Program

MPI_BCAST(void *buf, int count, MPI_Datatype datatype, int source,
MPI_Comm comm,ierr)- Fortran Program

buf :the address of the send buffer.

count : the number of elements sent to each process.

datatype is MPI defined constant indicating the data type of the elements
in the buffer.

root :is an integer indicating the rank of broadcast

comm : the communicator.

Scatter

Distributes distinct messages from a single source task to
each task in the group. if one wants to distribute the data
into n equal segments, where the ith segment is sent to the
ith process in the group which has n processes.

MPI_Scatter(&sendbuf,sendcnt,sendtype,&recvbuf,recvcnt,recvtype,root,comm)

MPI_SCATTER (sendbuf,sendcnt,sendtype,recvbuf,recvcnt,recvtype,root,comm,ierr)

Tl Processoes [Momory >] (L} Pocessars [Momory >
w a|slc|p] | | wlal | | | _

p | | | | J 2 | O

B3 | p3 | D

< ’ \ J

Scatter

MPI_Scatter(&sendbuf,sendcnt,sendtype,&recvbuf,recvcnt,recvtype,root,comm)

MPI_SCATTER (sendbuf,sendcnt,sendtype,recvbuf,recvcnt,recvtype,root,comm,ierr)

sendbuf the address of the send buffer.

sendcnt the number of elements sent to each process.
sendtype : the data type of the send buffer elements.
recvbuf the address of the receive buffer.

recvent the number of elements in the receive buffer.
recvtype : the data type of the receive buffer elements.
root , the rank of the sending process.

comm : the communicator.

Gathers distinct messages from each task in the group to a
single destination task. This routine is the reverse operation of
MPI_Scatter.

| ‘ T S
JU Processors Memory D 3 Processors Memory 1>
w 4| | j w|A|B|C|D|

| | 1 | |
¥ _.Bi.m-.-l...;.--J---..,-..-. > | VR TR VO TS s, —_—;
#ilcl | | | |1 []|
'3 D ! : ’3 | l
A rzrrszasrarnrr eIz N T)

Gather

MPTI_Gather(&sendbuf,sendcnt,sendtype, &recvbuf,recvcount,recvtype,root,comm)

MPI_GATHER (sendbuf,endcnt,sendtype,recvbuf recvcount,recvtype,root,comm,ierr)

sendbuf : the address of the send buffer.

sendcnt : the number of elements in the send

sendtype : the data type of the send buffer elements
recvbuf : the starting address of the receive buffer.
recvent : the number of elements for any single receive.
recvtype : the data type of the receive buffer elements.
root : the rank of the receiving process.

comm , the communicator.

AllGather

Concatenation of data to all tasks in a group. Each rank in the
group in effect performs a one - to — all broadcast.

int MPI_Allgather(void *sendbuf, int sendcount,MPI_Datatype senddatatype, void*recvbuf,
int recvcount, MPI_Datatype recvdatatype, MPI_Comm comm)

T) W
a4l | 1 | w |4|B|C|D|]
ot [B| | | | | ||=| |4a|B|C|D]|
1 Kod I I I I v 4| B|Cc|D]]
i D | j | A|B|C|D| l)

All-to-All

Each process sends a different portion of sendbuf to each other
process (incl. itself)
recvbuf of target process stores data in rank order

sendcount specifies no. of elements sent to each process

’«T_L Processors | Memory “D J\TL Processors Memory:/\/?
p0 | 40| a1 a2 | a3 } J s0 | 20 | BO L co | oo | l
pl | B0 |B1 | B2|8B3 | J ol | a1 | B A ¢l | b1
2 |co | c A 2 csj J 2 |42 B2 |c2 D2 |
p3 |oo | o1 | D2 | D3 | l p3 |43 |83 c3|os |

. - a J . J

Reduce

Used to combine partial results from all processors
Result returned to root processor
Several types of operations available

Works on single elements and arrays

Reduce

MPI_Reduce (&sendbuf,&recvbuf,count,datatype,op,root,comm)

MPI_REDUCE (sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

o—— (g —
wilof | | | MPI_SUM [= (0o | | | | |
mf2ol [[1 [] o o1 |
» (30| | | | 2 |
wfaol T [T[] & J

Reduction operations

Operation Meaning Datatypes

MPI_MAX Maximum C integers and floating point
MPI_MIN Minimum C integers and floating point
MPI_SUM Sum C integers and floating point
MPI_PROD Product C integers and floating point
MPI_LAND Logical AND C integers

MPI_BAND Bit-wise AND C integers and byte
MPI_MAXLOC | max value-location Data-pairs

MPI_MINLOC min value-location Data-pairs

The gather, scatter, allgather, and alltoall routines have variable data

versions. For their variable data versions, each process can send and/or

receive a different number of elements.

MPI_Scatterv
MPI_Gatherv
MPI_Allgatherv
MPI_Alltoallv

What does the "v" stand for?

varying - size,relative location of the messages.

Summary

PO P1 p2* P3 Function PO P1 P2 P3

a b c d MPI Gather ab,c,d

a b c d MPI Allgather |abecd |abecd |abecd |abecd
ab,cd MPI Scatter a b ¢ d

abecd |efgh |i]k)| mnop |[MPI AlltoAll |aeim |bfjn |cgkpo dh,lp

b MPI Bcast b b b b

SBuf SBuf SBuf SBuf ‘ RBuf RBuf RBuf RBuf

Sender/Root process required by MPI_Gather, MPI_Scatter,
MPI_Bcast

Some Advance MPI Features

« Dynamic Processes - extensions that remove the static
process model of MPI. Provides routines to create new
processes

« One-Sided Communications - provides routines for one
directional communications. Include shared memory
operations (put/get) and remote operations.

« Extended Collective Operations - allows for non-
blocking collective operations and application of collective
operations to inter-communicators

 Parallel I/0 - describes MPI support for parallel I/O

Thanks

