
MPI Collective Communication

Sandeep Agrawal
C-DAC, Pune

Agenda

• Collective Communication

• Types Of Collective Communication

• Collective Communication Routines

• Collective Communication II Routines

• Some Advance MPI Features

Hi Amit

Hi Sameer

Simplest form of message communication

• Message is sent from a sending process to a receiving

process only these two process need to know anything about

the message.

Point To Point Communication

Hi All
Hi

Hi

Hi

Hi

• Collective communication must involve all processes in the
scope of a communicator.

• Collective Participation in solving the problem.

Collective Communication

Characteristics

MPI collective communication routines differ in many ways from MPI

point-to-point communication routines

• Involves coordinated communication within a group of

processes identified by an MPI communicator.

• Substitute for a more complex sequence of point-to-point calls.

• All routines block until they are locally complete.

• In some cases, a root process originates or receives all data.

• Amount of data sent must exactly match amount of data

specified by receiver.

• No message tags are needed.

Communicators and Groups

• MPI uses objects called communicators and groups to define

which collection of processes may communicate with each

other. Most MPI routines require you to specify a communicator

as an argument.

Collective Communication

• Collective communication must involve all processes in the

scope of a communicator. All processes are by default,

members in the communicator MPI_COMM_WORLD.

• It is the programmer's responsibility to ensure that all

processes within a communicator participate in any collective

operations.

Types of Collective Operations

• Synchronization - Processes wait until all members of the group

have reached the synchronization point.

• Data Movement - broadcast, scatter/gather, all to all.

• Collective Computation (reductions) - one member of the group

collects data from the other members and performs an

operation (min, max, add, multiply, etc.) on that data.

Collective Communication Routines

Barrier

• Creates a barrier synchronization in a group.

• Each task, when reaching the MPI_Barrier call, blocks until all

tasks in the group reach the same MPI_Barrier call.

Barrier

Barrier

Barrier

MPI_Barrier (comm) - C Program

MPI_BARRIER (comm,ierr) - Fortran Program

Data Movement

MPI provides three types of collective data movement routines

• Broadcast

• Gather

• Scatter

• Broadcasts (sends) a message from the process with rank

"root" to all other processes in the group.

Broadcast

Broadcast

• Sends data stored in buffer buf of process source to all the

other processes in the group comm.

Broadcast

int MPI_Bcast(void *buf, int count, MPI_Datatype datatype, int
source, MPI_Comm comm) - C Program

MPI_BCAST(void *buf, int count, MPI_Datatype datatype, int source,
MPI_Comm comm,ierr)- Fortran Program

buf :the address of the send buffer.

count : the number of elements sent to each process.

datatype : is MPI defined constant indicating the data type of the elements

in the buffer.

root :is an integer indicating the rank of broadcast root process

comm :the communicator.

• Distributes distinct messages from a single source task to
each task in the group. if one wants to distribute the data
into n equal segments, where the ith segment is sent to the
ith process in the group which has n processes.

MPI_Scatter(&sendbuf,sendcnt,sendtype,&recvbuf,recvcnt,recvtype,root,comm)

MPI_SCATTER (sendbuf,sendcnt,sendtype,recvbuf,recvcnt,recvtype,root,comm,ierr)

Scatter

MPI_Scatter(&sendbuf,sendcnt,sendtype,&recvbuf,recvcnt,recvtype,root,comm)

MPI_SCATTER (sendbuf,sendcnt,sendtype,recvbuf,recvcnt,recvtype,root,comm,ierr)

Scatter

sendbuf : the address of the send buffer.
sendcnt : the number of elements sent to each process.
sendtype : the data type of the send buffer elements.
recvbuf : the address of the receive buffer.
recvcnt : the number of elements in the receive buffer.
recvtype : the data type of the receive buffer elements.
root : the rank of the sending process.
comm : the communicator.

• Gathers distinct messages from each task in the group to a

single destination task. This routine is the reverse operation of

MPI_Scatter.

Gather

MPI_Gather(&sendbuf,sendcnt,sendtype,&recvbuf,recvcount,recvtype,root,comm)

MPI_GATHER (sendbuf,sendcnt,sendtype,recvbuf,recvcount,recvtype,root,comm,ierr)

sendbuf : the address of the send buffer.

sendcnt : the number of elements in the send buffer.

sendtype : the data type of the send buffer elements.

recvbuf : the starting address of the receive buffer.

recvcnt : the number of elements for any single receive.

recvtype : the data type of the receive buffer elements.

root : the rank of the receiving process.

comm : the communicator.

Gather

• Concatenation of data to all tasks in a group. Each rank in the
group in effect performs a one – to – all broadcast.

int MPI_Allgather(void *sendbuf, int sendcount,MPI_Datatype senddatatype, void*recvbuf,
int recvcount,MPI_Datatype recvdatatype, MPI_Comm comm)

AllGather

All-to-All

Each process sends a different portion of sendbuf to each other

process (incl. itself)

• recvbuf of target process stores data in rank order

• sendcount specifies no. of elements sent to each process

Reduce

• Used to combine partial results from all processors

• Result returned to root processor

• Several types of operations available

• Works on single elements and arrays

MPI_Reduce (&sendbuf,&recvbuf,count,datatype,op,root,comm)

MPI_REDUCE (sendbuf,recvbuf,count,datatype,op,root,comm,ierr)

Reduce

Reduction operations

MPI Collective Communication II

• MPI_Scatterv

• MPI_Gatherv

• MPI_Allgatherv

• MPI_Alltoallv

What does the "v" stand for?

varying – size,relative location of the messages.

The gather, scatter, allgather, and alltoall routines have variable data

versions. For their variable data versions, each process can send and/or

receive a different number of elements.

Summary

• Sender/Root process required by MPI_Gather, MPI_Scatter,
MPI_Bcast

• Dynamic Processes - extensions that remove the static
process model of MPI. Provides routines to create new
processes

• One-Sided Communications - provides routines for one
directional communications. Include shared memory
operations (put/get) and remote operations.

• Extended Collective Operations - allows for non-
blocking collective operations and application of collective
operations to inter-communicators

• Parallel I/O - describes MPI support for parallel I/O

Some Advance MPI Features

Thanks

