
Lakshmi Narasimhan/Jing Xu

Intel Architecture Graphics and Software (IAGS)

2

Speed Up development
with open Ai SoftwAre

TOOLKITs
App
Developers

libraries
Data
Scientists

Kernels
Library
Developers

Machine learning Deep learning

*

More framework optimizations in progress…

model
Zoo

Model

Visit: www.intel.ai/technology

Intel® Math Kernel Library
(Intel® MKL)

Deep Neural
Networks Library

(Intel® oneDNN)

Intel Optimized FrameworksIntel® Data
Analytics
Acceleration
Library (DAAL)

Intel®
Distribution
for Python*
(Sklearn*,
Pandas*)

R
(Cart,
Random
Forest,
e1071)

Distributed
(MlLib on
Spark,
Mahout)

Intel® oneAPI Collective
Communication Library

(Intel® oneCCL)

CpU ▪︎ GpU

Optimization Notice

1 An open source version is available at: 01.org/openvinotoolkit *Other names and brands may be claimed as the property of others.
Developer personas show above represent the primary user base for each row, but are not mutually-exclusive
All products, computer systems, dates, and figures are preliminary based on current expectations, and are subject to change without notice.

http://www.intel.ai/technology
https://software.intel.com/en-us/articles/optimization-notice

3

Speed Up Development
with open AI software

TOOLKITs
App
Developers

libraries
Data
Scientists

Kernels
Library
Developers

mAChine leArninG deep leArninG

*

More framework optimizations in progress…

Model
Zoo

Model

Visit: www.intel.ai/technology

Intel® Math Kernel Library
(Intel® MKL)

Deep Neural
Networks Library

(Intel® oneDNN)

Intel Optimized FrameworksIntel® Data
Analytics
Acceleration
Library (DAAL)

Intel®
Distribution
for Python*
(Sklearn*,
Pandas*)

R
(Cart,
Random
Forest,
e1071)

Distributed
(MlLib on
Spark,
Mahout)

Intel® oneAPI Collective
Communication Library

(Intel® oneCCL)

CpU ▪︎ GpU

Optimization Notice

1 An open source version is available at: 01.org/openvinotoolkit *Other names and brands may be claimed as the property of others.
Developer personas show above represent the primary user base for each row, but are not mutually-exclusive
All products, computer systems, dates, and figures are preliminary based on current expectations, and are subject to change without notice.

http://www.intel.ai/technology
https://software.intel.com/en-us/articles/optimization-notice

Speed-up Machine Learning and Analytics with
Intel® oneAPI Data Analytics Library (oneDAL)

4

Boost Machine Learning & Data Analytics Performance

▪ Helps applications deliver better predictions faster

▪ Optimizes data ingestion & algorithmic compute together for
highest performance

▪ Supports offline, streaming & distributed usage models to meet
a range of application needs

▪ Split analytics workloads between edge devices and cloud to
optimize overall application throughput

Pre-processing Transformation Analysis Modeling Decision Making

Decompression,
Filtering,

Normalization

Aggregation,
Dimension Reduction

Summary
Statistics

Clustering, etc.

Machine Learning (Training)
Parameter Estimation

Simulation

Forecasting
Decision Trees, etc.

Validation

Hypothesis Testing
Model Errors

What’s New in the 2020 Release

New Algorithms:

▪ Probabilistic classification and variable importance
computation for gradient boosted trees

▪ Classification stump with information gain and Gini index split
methods

▪ Regression stump with the Mean Squared Error (MSE)
algorithm split methodLearn More: software.intel.com/daal

5

Distributed
Processing

Online
Processing

D1

D2

D3

R = F(R1,…,Rk)

Si+1 = T(Si,Di)
Ri+1 = F(Si+1)

R1

Rk

D1

D2

Dk

R2 R

Si,Ri

Batch
Processing

D1Dk-1Dk
…

Append

R = F(D1,…,Dk)

Processing Modes

d4p.kmeans_init(10, method="plusPlusDense") d4p.kmeans_init(10, method="plusPlusDense“,
distributed=“True”)

d4p.kmeans_init(10, method="plusPlusDense“,
streaming=“True”)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Intel® oneAPI Data Analytics Library(beta) (oneDAL) Algorithms
Machine Learning

Supervised
learning

Regression

Linear
Regression

Classification

Naïve Bayes

SVM

Unsupervised
learning

K-Means
Clustering

EM for GMM

Collaborative
filtering

Alternating
Least Squares

Ridge
Regression

Algorithms supporting batch and distributed processing

Algorithms supporting batch processing

Random Forest

Decision Tree

Gradient Boosting

Brown/Logit

Boosting

LASSO

DBSCAN

kNN Apriori

Logistic
Regression

AdaBoost

Algorithms supporting Intel GPU (Gen 9 & Gen12)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Intel® oneAPI Data Analytics Library(beta) (oneDAL) algorithms
Data Transformation and Analysis

Basic statistics
for datasets

Low order
moments

Variance-
Covariance

matrix

Correlation and
dependence

Cosine
distance

Correlation
distance

Matrix factorizations

SVD

QR

Cholesky

Dimensionality
reduction

PCA

Outlier detection

Association rule
mining (Apriori)

Univariate

MultivariateQuantiles

Order
statistics Optimization solvers

(SGD, AdaGrad, lBFGS, CD)

Math functions
(exp, log,…)

Algorithms supporting batch, online and/or distributed processing

Algorithms supporting batch processing

tSVD

Algorithms supporting batch processing Intel GPU (Gen 9 & Gen12)

8

KNeighborsClassifier
RandomForestClassifier
RandomForestRegressor

Intel® oneDAL

daal4py

Scikit-Learn*
Equivalents

Scikit-Learn*
API

Compatible

PCA
KMeans

LinearRegression
Ridge

SVC
pairwise_distances

logistic_regression_path

Use directly for
• Scaling to multiple nodes
• Streaming data
• Non-homogeneous

dataframes

USE_DAAL4PY_SKLEARN=YES

oneAPI Data Analytics Library (oneDAL)

9

What makes Intel® oneDAL faster?

The best performance on Intel Architectures
with Intel® MKL vs. less performance OS
BLAS/LAPACK libs

1

targets to many-core systems to achieve the
best scalability on Intel® Xeon, other libs mostly
target to client versions with small amount of
cores

2

C++ baseline Optimized Math

routines

Threading Advanced

Vectorization

Memory

optimizations

Support of the newest

arhitecrures

Scaling-out

opportunities

P
e

rf
o

rm
a

n
ce

Other ML libraries DAAL

uses the latest available vector-instructions on each
architecture, enables them by compiler options, intrinsics.
Usually other ML libs build application without vector-
instructions support or sse4.2 only.

3

uses the most efficient memory optimization practices:
minimally access memory, cache access optimizations,
SW memory prefetching. Usually Other ML libs don’t
make low-level optimizations.

4

enables new instruction sets and other
HW features even before official HW
lunch. Usually other ML libs do this with
long delay.

5

1 2
3

4

5

6

provides distributed algorithms which
scale on many nodes6

Ecosystem compatibilityGreAter prodUCtivityFaster Performance

Prebuilt & Accelerated Packages
Supports Python* 2.7 & 3.6, & 3.7 conda,

pip

Operating System: Windows*, Linux*, MacOS1*

Intel® Architecture Platforms

Performance Libraries, Parallelism,
Multithreading, Language Extensions

Accelerated NumPy*/SciPy*/scikit-learn*
with oneMKL1 & oneDAL2

Data analytics, machine learning with scikit-
learn, daal4py

Optimized run-times Intel MPI®, Intel® TBB

Scale with Numba* & Cython*

Includes optimized mpi4py, works with
Dask* & PySpark*

Optimized for latest Intel® architecture

Prebuilt & optimized packages for
numerical computing, machine/deep
learning, HPC & data analytics

Drop in replacement for existing Python -
Usually with no code changes required

Jupyter* notebooks, Matplotlib included

Conda build recipes included in packages

Free download & free for all uses including
commercial deployment

Compatible & powered by Anaconda*,
supports conda & pip

Distribution & individual optimized
packages also available at conda &
Anaconda.org, YUM/APT, Docker image
on DockerHub

Optimizations upstreamed to main Python*
trunk

Commercial support through Intel® Parallel
Studio XE

1Intel® oneAPI Math Kernel Library
2Intel® oneAPI Data Analytics Library

Accelerate libraries with Intel® Distribution for Python*
High Performance Python* for Scientific Computing, Data Analytics, Machine Learning

Drop-in replacement for existing
Python*

Usually NO code changes required!

oneMKL accelerated NumPy*, and
SciPy now in Anaconda*!

10

https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers

The layers of quantitative
Python*

▪ The Python* language is interpreted and has
many type checks to make it flexible

▪ Each level has various tradeoffs; NumPy*
value proposition is immediately seen

▪ For best performance, escaping the Python*
layer early is best method

11

Performance Optimization:
Introduction to Python* Performance, cont.

Python*

NumPy*

Intel® oneAPI
Math Kernel
Library
(oneMKL)

Enforces Global Interpreter Lock (GIL)
and is single-threaded, abstraction
overhead. No advanced types.

Gets around the GIL
(multi-thread and multi-core)
BLAS API can be the bottleneck

Gets around BLAS API bottleneck
Much stricter typing
Fastest performance level
Dispatches to hardware
vectorization

*Basic Linear Algebra Subprograms (BLAS)
[CBLAS]

Intel® oneMKL included with Anaconda* standard bundle; is Free for Python*

12

Productivity with Performance via Intel®
Distribution for Python*

Intel® Distribution for Python*

Learn More: software.intel.com/distribution-for-python

mpi4pysmp

tbb4pydaal4py

Data acquisition &
preprocessing

Numerical/Scientific computing &
machine learning

Composable
multi-threading

Distributed
parallelism

https://www.anaconda.com/blog/developer-blog/parallel-python-with-numba-and-parallelaccelerator/

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.
Performance results are based on testing as of 11/11/2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Configuration: Testing by Intel as of 11/11/2019. Intel® Data Analytics Acceleration Library 2019.3 (Intel® DAAL); Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz, 2 sockets, 28 cores per socket, 10M samples, 10
features, 100 clusters, 100 iterations, float32

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3
instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product
User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

81.4

40.6

19.4
10.1

5.1 3.0 1.5

0

20

40

60

80

100

0.0

20.0

40.0

60.0

80.0

100.0

1 2 4 8 16 28 56

P
a

ra
ll

e
l e

ff
ic

ie
n

cy
, %

E
xe

cu
ti

o
n

 t
im

e
, s

e
c

Number of cores

Intel® DAAL 2020 K-means fit, cores scaling
(10M samples, 10 features, 100 clusters, 100 iterations, float32)

Time, s Efficiency (actual), % Efficiency (ideal), %

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

14

Intel® Distribution for Python* Scikit-learn* Optimizations

Figure 1**

Figure 1

15

Strong & Weak Scaling via daal4py
Hardware

Intel(R) Xeon(R) Gold 6148 CPU @
2.40GHz, EIST/Turbo on

2 sockets, 20 Cores per socket

192 GB RAM

16 nodes connected with Infiniband

Operating
System

Oracle Linux Server release 7.4

Data Type double

On a 32-node cluster (1280 cores) daal4py computed K-
Means (10 clusters) of 1.12 TB of data in 107.4 seconds and
35.76 GB of data in 4.8 seconds.

On a 32-node cluster (1280 cores) daal4py computed linear
regression of 2.15 TB of data in 1.18 seconds and 68.66 GB
of data in less than 48 milliseconds.

Figure 2** Figure 3**

16

Accelerating K-Means

https://cloudplatform.googleblog.com/2017/11/Intel-performance-libraries-and-python-distribution-enhance-performance-and-scaling-of-Intel-Xeon-
Scalable-processors-on-GCP.html

17

import daal4py as d4p

daal4py accepts data as CSV files, numpy arrays or pandas dataframes
here we let daal4py load process-local data from csv files
data = "kmeans_dense.csv"

Create algob object to compute initial centers
init = d4p.kmeans_init(10, method="plusPlusDense")
compute initial centers
ires = init.compute(data)
results can have multiple attributes, we need centroids
centroids = ires.centroids
compute initial centroids & kmeans clustering
result = d4p.kmeans(10).compute(data, centroids)

K-Means using daal4py

18

import daal4py as d4p

initialize distributed execution environment
d4p.daalinit()

daal4py accepts data as CSV files, numpy arrays or pandas dataframes
here we let daal4py load process-local data from csv files
data = "kmeans_dense_{}.csv".format(d4p.my_procid())

compute initial centroids & kmeans clustering
init = d4p.kmeans_init(10, method="plusPlusDense", distributed=True)
centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

mpirun -n 4 python ./kmeans.py

Distributed K-Means using daal4py

19

import daal4py as d4p

Configure a Linear regression training object for streaming
train_algo = d4p.linear_regression_training(interceptFlag=True, streaming=True)

assume we have a generator returning blocks of (X,y)...
rn = read_next(infile)

on which we iterate
for chunk in rn:

algo.compute(chunk.X. chunk.y)

finalize computation
result = algo.finalize()

Streaming data (linear regression) using daal4py

Intel-optimized XGBoost*

20

1) XGBoost* 0.9 – w/ no Intel optimizations
2) XGBoost* 1.0 – the latest official XGBoost
3) XGBoost* from Intel channel
(we expect that XGBoost* 1.1 official will have similar
performance).

Intel XGB 0.9

conda install xgboost –c intel

Figure 4**

21

Demo

22

Scikit-Learn Sample with oneDAL

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® Distribution for Python

▪ Product page – overview, features, FAQs…

▪ Training materials – movies, tech briefs, documentation,
evaluation guides…

▪ Support – forums, secure support…

23

More Resources

https://software.intel.com/en-us/articles/optimization-notice/
https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/distribution-for-python/documentation
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/training
https://software.intel.com/en-us/videos/intel-distribution-for-python-highlights-overview

24

Footnotes and Disclaimers
*Other names and brands may be claimed as the property of others

**Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more information, see Performance Benchmark Test Disclosure.

**Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to
Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference
Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

http://www.intel.com/benchmarks

