INTRODUCTION TOINTEL DATA
ANALYTICS ACCELERATION LIBRARY AND
INTEL® DISTRIBUTION OF PYTHON

ics and Software (IAGS)

OPEED UP DEVELOPMENT

WITH OPEN Al SOFTWARE

MACHINE LEARNING DEEP LEARNING

TOOLKITS

[
[
|
I ANALYTICS MUDEI_ -
App | ©penVIN®
0 Developers | ZO Z[lll
1
- I_IBRARIES Intel®Data Intel® R Distributed : ~‘J“tﬂ Optir:ized Frameworks
Analytics Distribution (Cart, (MLLib on i
A t H * Random Spark, Iensor Blgm] Caffe @ ONNX
Data cceleration for Python Forest, Mahout) ‘
“ Scientists Library (DAAL) LSkl:a":*i e1071; : @Xl’let O P_YTOI'Ch
andas’) | More framework optimizations in progress...
0
KERNELS 0 , | Intel® oneAPI Collective Deep Neural
: Intel® Math Kernel Library ' Communication Library Networks Library
leral’y (Intel® MKL)] (Intel® oneCCL) (Intel® oneDNN)
“ Developers |

CPU = GPU

1 An open source version is available at: 01.org/openvinotoolkit *Other names and brands may be claimed as the property of others.
Developer personas show above represent the primary user base for each row, but are not mutually-exclusive))
All products, computer systems, dates, and figures are preliminary based on current expectations, and are subject to change without notice.

http://www.intel.ai/technology
https://software.intel.com/en-us/articles/optimization-notice

OPEED UP DEVELOPMENT

WITH OPEN Al SOFTWARE MODEL

DEEP LEARNING
O I\QELK TS

anavmes — MODEL ®penVIN®
Developers Z.O i

MACHINE LEARNING

S 100

Intel Optimized Frameworks
L \ =

* Bigl1" caffe € ONNX

Random Spark, ensor

R Distributed
(Cart, (MlLib on

Intel® Data Intel®

I_IBRARIES Analytics Distribution

- - e - e e e e e -

Data Acceleration for Python* Forest, Mahout)
Scientists lerary (DAAL) (Sklea”:*v e1071; : @Xl’let O P_YTOI'Ch
gangssy | More framework optimizations in progress...

|

| © . Deep Neural
KERNEI-S Intel® Math Kernel Library | Intel one_API_ Coll_ectlve Networks Library
Library (Intel® MKL) | Communlgatlon Library (Intel® oneDNN)
Developers | (Intel® oneCCL)

CPU = GPU

Visit:

o
&
<
Q
Visit: g

http://www.intel.ai/technology
https://software.intel.com/en-us/articles/optimization-notice

Speed-up Machine Learning and Analytics with
Intel® oneAPI Data Analytics Library (oneDAL)

Boost Machine Learning & Data Analytics Performance What's New in the 2020 Release

» Helps applications deliver better predictions faster

» Optimizes data ingestion & algorithmic compute together for
highest performance * Probabilistic classification and variable importance

. . _— computation for gradient boosted trees
» Supports offline, streaming & distributed usage models to meet

arange of application needs » Classification stump with information gain and Gini index split

» Split analytics workloads between edge devices and cloud to methods

optimize overall application throughput) _
= Regression stump with the Mean Squared Error (MSE)

Learn More: software.intel.com/daal aleonth SR

Pre-processing Transformation Analysis Modeling Validation Decision Making

Y B Oe

Decompression, Aggregation, Summary Machine Learning (Training) Hypothesis Testing Forecasting
Filtering, Dimension Reduction Statistics Parameter Estimation Model Errors Decision Trees, etc.
Normalization Clustering, etc. Simulation

Processing Modes

Batch

Processing
Debiy b 2
Append

R =F(D,,....D,)

d4p.kmeans_init(10, method="plusPlusDense")

Distributed
Processing
ol R,
.l P}" -
"D.Z' " R, _l:;h' g

R = F(Ry,...,Ry)

d4p.kmeans_init(10, method="plusPlusDense",
distributed=“True”)

Online
Processing

.D.3 D,

.l _.. =....l.=l ;I' .. =.. ..
W e
n u 1 n = "

SilRi
Sitq = T(S;D)
Risp = F(5i+1)

d4p.kmeans_init(10, method="plusPlusDense”,
streaming="“True”)

Intel® oneAPI Data Analytics Librarypeta (OneDAL) Algorithms

Machine Learning

Ridge
Regression
Linear
Regression LASSO
Regression
Decision Tree AdaBoost
-)
Supervised Random F ¢ Brown/Logit
i andom Fores
learning Boosting
Gradient Boosting] Naive Bayes
o r S
Classification Logistic
Regression
< >
7)
kNN
C] Algorithms supporting Intel GPU (Gen 9 & Gen12) S <z
D Algorithms supporting batch processing SVM

Algorithms supporting batch and distributed processing

Optimization Notice

Unsupervised
learning

Collaborative
filtering

DBSCAN

J\C

K-Means
Clustering

EM for GMM

Alternating
Least Squares

Apriori

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel® oneAPI Data Analytics Libraryweeta (OneDAL) algorithms
Data Transformation and Analysis

Basic statistics Correlation and , o Dimensionality , :
for datasets dependence Matrix factorizations reduction Outlier detection

— Low order — Cosine — SVD L PCA L~ Univariate

moments distance

- QR

Quantiles a Cgrrelation Association rule Multivariate

_ Istance | Cholesky mining (Apriori) _
i)
Order Serie
| statistics matrix - tSVD Optimization solvers Math functions
J (SGD, AdaGrad, IBFGS, CD) (exp, log,...)
Algorithms supporting batch processing Intel GPU (Gen 9 & Gen12)

D Algorithms supporting batch processing

Algorithms supporting batch, online and/or distributed processing

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

oneAPI Data Analytics Library (oneDAL)

PCA

KMeans
LinearRegression

Ridge

SvC

pairwise_distances
logistic_regression_path

Use directly for
* Scaling to multiple nodes
» Streaming data
* Non-homogeneous
dataframes

Scikit-Learn*
API
Compatible

Scikit-Learn*

Equivalents

USE_DAAL4PY_SKLEARN=YES

daald4py

Intel® oneDAL

KNeighborsClassifier
RandomForestClassifier
RandomForestRegressor

What makes Intel® oneDAL faster?

N 6
(V]
c
5 5
S
S
= 4
a 3

1 2
O— M O s —0 =0
C++ baseline Optimized Math Threading Advanced Memory Support of the newest Scaling-out g
routines Vectorization optimizations arhitecrures opportunities

e=@== Other ML libraries ==@==DAAL

The best performance on Intel Architectures uses the latest available vector-instructions on each enables new instruction sets and other

with Intel® MKL vs. less performance OS architecture, enables them by compiler options, intrinsics. HW features even before official HW

BLAS/LAPACK libs Usually other ML libs build application without vector- lunch. Usually other ML libs do this with
instructions support or sse4.2 only. long delay.

targets to many-core systems to achieve the uses the most efficient memory optimization practices: provides distributed algorithms which

best scalability on Intel® Xeon, other libs mostly minimally access memory, cache access optimizations, scale on many nodes

target to client versions with small amount of SW memory prefetching. Usually Other ML libs don't

cores make low-level optimizations.

Accelerate libraries with Intel® Distribution for Python*

High Performance Python* for Scientific Computing, Data Analytics, Machine Learning

FASTER PERFORMANCE _ ECOSYSTEM COMPATIBILITY

Performance Libraries, Parallelism, Prebuilt & Accelerated Packages Supports Python* 2.7 & 3.6, & 3.7 conda,

Multithreading, Language Extensions

PIp
Accelerated NumPy*/SciPy*/scikit-learn* Compatible & powered by Anaconda*,
with oneMKL" & oneDAL? supports conda & pip
Data analytics, machine learning with scikit- Distribution & individual optimized

learn, daal4py Drop-in replacement for existing

Optimized run-times Intel MPI°, Intel® TBB Python*
Usually NO code changes required!

oneMKL accelerated NumPy*, and

SciPy now in Anaconda*!

Scale with Numba* & Cython* Optimizations upstreamed to main Python*

Includes optimized mpi4py, works with trunk

Dask* & PySpark* Commercial support through Intel® Parallel

Optimized for latest Intel® architecture Swisle 45

. | intel intel) :
Intel® Architecture Platforms i ;0:3' m(,:i j
| ; a:l RE i5

Operating System: Windows*, Linux*, MacOS™*

TIntel® oneAPI Math Kernel Library
2Intel® oneAPI Data Analytics Library

https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers

Performance Optimization:

Enforces Global Interpreter Lock (GIL)
and is single-threaded, abstraction
overhead. No advanced types.

The layers of quantitative
Python*

» The Python language is interpreted and has
many type checks to make it flexible

Gets around the GIL

(multi-thread and multi-core)

BLAS API can be the bottleneck

*Basic Linear Algebra Subprograms (BLAS)
[CBLAS]

= Each level has various tradeoffs; NumPy*
value proposition is immediately seen

* For best performance, escaping the Python*
layer early is best method

Gets around BLAS API bottleneck
Much stricter typing

Fastest performance level
Dispatches to hardware
vectorization

Intel® oneMKL included with Anaconda* standard bundle; is Free for Python*

Productivity with Performance via Intel®
Distribution for Python*

Intel® Distribution for Python* -
[pandas || & Br| S 80|PyJ[teann J{SMP}

EEEE MODIN]? daaldpy| : tbb4py
|

\ A | l J
| ! |
Data acquisiti.on & Numerical/Scientific computing & Composable Distributed
preprocessing machine learning multi-threading parallelism

Learn More: software.intel.com/distribution-for-python

https://www.anaconda.com/blog/developer-blog/parallel-python-with-numba-and-parallelaccelerator/

Intel® DAAL 2020 K-means fit, cores scaling
(10M samples, 10 features, 100 clusters, 100 iterations, float32)

100.0 100

81.4
80.0 80
60.0 60
40.6
40.0 40
19.4
20.0 I 10.1 20
. 51 3.0 15
- | | — [O

1 2 4 8 16 28 56
Number of cores

o
o

Execution time, sec
Parallel efficiency, %

mmTime, s ——Efficiency (actual), % Efficiency (ideal), %

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.
Performance results are based on testing as of 11/11/2019 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Configuration: Testing by Intel as of 11/11/2019. Intel® Data Analytics Acceleration Library 2019.3 (Intel® DAAL); Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz, 2 sockets, 28 cores per socket, TOM samples, 10
features, 100 clusters, 100 iterations, float32

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3
instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product
User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

Intel® Distribution for Python* Scikit-learn* Optimizations

Intel optimizations improve scikit-learn efficiency closer to native code

speeds on Intel® Xeon™ processors

100%
90%

80%
70%
60%
50%
40%
30%
20%
10%
0% — s— - o— —

1K x 15K 1K x 15K 1M x 50 1Mx50 1M x50 1M x 50 1M x 50 1M x 50 10K x 1K 10K x 1K

t native code with Intel® DAAL

Performance efficiency measured
agains

cosine dist correlation dist kmeans.fit kmeans.predict linear_reg.fit linear_reg.predict ridge_reg.fit ridge_reg.predict svm.fit svm.predict
(binary) (binary)

m Stock Python m Intel® Distribution for Python* 2019
Figure 1**

Performance results are based on testing as of July 9, 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

Figure Isoftware and workloads used in performance tests may have been optimized for performance only on intel microprocessors. Performance tests, such as SYSmark and MoblleMark, are measured using specific computer systems, components, software,
operations and functions. Any change 1o any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products. For more complete information, see Performance Benchmark Test Disclosure.

Testing by Intel as of July 9, 2018. Configuration: Stock Python: python 3.6.6 hc3d631a_0 Installed from conda, numpy 1.15, numba 0.39.0, livmlite 0.24.0, scipy 1.1.0, scikit-learn 0,19.2 Installed from pip; Intel Python: Intel® Distribution for Python® 2019 Goldt
python 3.6.5 Intel_11, numpy 1.14.3 intel_py36_5, mki 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6,mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmiite 0.24.0 Intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-learn 0.19.1
intel_np114py36_35; 0S: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 sockets, 18 coresfsocket, HT:0ff), 256 GB of DDR4 RAM, 16 DIMMs of 16 GB@2666MH2

»SSE 3 Instruction sets and other optimizations, Intel does

Intel's compilers may or may not optimize to the same degree for non-intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, a
not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are imtended use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guldes for more information regarding the specific Instruction sets covered by this notice. Notice revision #20110804

For more complete information about com, r optimizations, see our Oplimization Notice.

Intel(R) Xeon(R) Gold 6148 CPU @
2.40GHz, EIST/Turbo on

Hardware 2 sockets, 20 Cores per socket

Strong & Weak Scaling via daal4py

daaldpy Linear Regression Distributed Scalability

Hard Scaling: Fixed input: 36M observations, 256 features
Weak Scaling: 36M observations and 256 features per node

oS
)

i
o
2
o
£
=
€
S
5

o
=

1 2 4 8

Number of nodes (with 40 cores on 2 sockets each)
m Batch Mode (single node base-line) ® Hard Scaling, 2 processes per node Weak Scaling; 2 processes per node

Figure 2**
On a 32-node cluster (1280 cores) daal4py computed linear
regression of 2.15 TB of data in 1.18 seconds and 68.66 GB
of data in less than 48 milliseconds.

Runtime [sec]

Oracle Linux Server release 7.4

double

daaldpy K-Means Distributed Scalability

Hard Scaling: Fixed input: 16M observations, 300 features, 10 clusters
Weak Scaling: 16M observations and 300 features per node

2 4 8

Number of nodes (with 40 cores on 2 sockets each)

m Batch Mode (single node base-line) ® Hard Scaling, 2 process per node Weak Scaling; 2 processes per node

Figure 3**
On a 32-node cluster (1280 cores) daal4py computed K-
Means (10 clusters) of 1.12 TB of data in 107.4 seconds and
35.76 GB of data in 4.8 seconds.

Accelerating K-Means

Performance speedups for Intel® Distribution for Python* scikit-learn on Google
Cloud Platform’s 96 vCPU instance Intel® Xeon™ Processors

§5 W Stock scikit-learn W Intel-optimized scikit-learn
M~
w
g
=
= "g PCA-based
=
g5 < 23X faster
o c
e c
©
o
£8
5=
@
o g random
25
o E < 21X faster
c 3
gl
£ "
¥ 2
_'u:) k-means++
%’ — 22X faster
CI
0 2 4 6 8 10 12 14

Time (Geomean, in seconds)

System Configuration: GCP VM, zone us-central1-¢; 96 vCPU, Intel Skylake; 360 GB memory. Ubuntu 16.04.3 LTS; Linux instance-1 4.10.0-38-generic #42~16.04.1-Ubuntu
SMP Tue Oct 10 16:32:20 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux; Intel® Distribution for Python* from Docker image intelpython/intelpython3_full:latest (created 2017-
09-12T20:10:42.8629655597); Stock Python*: pip install scikit-learn

https://cloudplatform.googleblog.com/2017/11/Intel-performance-libraries-and-python-distribution-enhance-performance-and-scaling-of-Intel-Xeon-
Scalable-processors-on-GCP.html

K-Means using daal4py

import daal4py as d4p

data = "kmeans_dense.csv"

init d4p.kmeans_init (10, method="plusPlusDense")

ires = init.compute(data)
centroids = ires.centroids

result = d4p.kmeans(10).compute(data, centroids)

Distributed K-Means using daal4py

import daal4py as d4p

d4p.daalinit()

data = "kmeans_dense_{}.csv".format(d4p.my_procid())

init = d4p.kmeans_init (10, method="plusPlusDense", distributed=True)

centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

mpirun -n 4 python ./kmeans.py

Streaming data (linear regression) using daal4py

import daal4py as d4p
train_algo = d4p.linear_regression_training(interceptFlag=True, streaming=True)
rn = read_next(infile)

for chunk in rn:
algo.compute(chunk.X. chunk.y)

result = algo.finalize()

Intel-optimized XGBoost*

XGBoost fit time, lower is better

97.1
695

Inf I

higgs1m tt Airlne-che MMIST MERank-30K Mortgage

mXGBOS ¥GBE1.0 mintel XGB

Figure 4**

Intel XGB 0.9

1) XGBoost* 0.9 — w/ no Intel optimizations
2) XGBoost* 1.0 — the latest official XGBoost

3) XGBoost* from Intel channel . .
(we expect that XGBoost* 1.1 official will have similar conda install ngOOSt —c intel

performance).

Demo

Scikit-Learn Sample with oneDAL

Original image (96,615 colors) Quantized image (64 colors, K-Means)

Software

More Resources

Ini

R INTEC DISTRIBUTION FOR
Intel® Distribution for Python

PYTHON - HIGHLIGHTS &
OVERVIEW

= Product page — overview, features, FAQs...

» Training materials — movies, tech briefs, documentation,
evaluation guides...

= Support - forums, secure support... intel"

Software

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice/
https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/distribution-for-python/documentation
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/training
https://software.intel.com/en-us/videos/intel-distribution-for-python-highlights-overview

24
Footnotes and Disclaimers

*Other names and brands may be claimed as the property of others

“Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when
combined with other products. For more information, see Performance Benchmark Test Disclosure.

“Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to
Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference
Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

http://www.intel.com/benchmarks

